منابع پایان نامه درباره خوشه‌بندی، مدیریت دانش، ارتباط با مشتری

دانلود پایان نامه ارشد

2-2-3- انواع دانش 16
2-2-3-1- دانش صريح 16
2-2-3-2- دانش ضمنی 16
2-2-4- مديريت دانش چیست؟ 17
2-2-5- استراتژی‌های مديريت دانش 18
2-2-5-1- استراتژی اجتماعی سازی (تبدیل دانش پنهان به پنهان) 19
2-2-5- 2- استراتژی برونی سازی (پنهان به آشکار) 19
2-2-5- 3- استراتژی ترکیبسازی (آشکار به آشکار) 20
2-2-5- 4- استراتژی درونیسازی (آشکار به پنهان) 20
2-2-6-معایب عدم بهرهگیری از دانش در سازمان 20
2-2-7- اهداف مدیریت دانش 21
2-2-8- مدلهای مديريت دانش 21
2-3- مديريت دانش مشتری 23
2-3-1- انواع دانش مشتری 24
2-3-2- مدل مدیریت دانش مشتری 28
2-4- مديريت ارتباط با مشتری 29
2-4-1- مديريت ارتباط مشتريان در نظام بانکی 32
2-4-2- مدیریت ارتباط با مشتری: اهداف، مزایا و چالش‌ها 33
2-5- مقايسه مفاهيم CKM و KM و CRM 34
2-6- تاریخچه‌ای از بانک و بانکداری 37
2-7- سير تحول فناوري اطلاعات در صنعت بانكداري 38
2-7-1 دوره اول: اتوماسيون پشت باجه 38
2-7-2- دوره دوم: اتوماسيون جلوي باجه 38
2-7-3- دوره سوم: اتصال مشتريان به حساب‌هایشان 38
2-7-4- دوره چهارم: یکپارچه‌سازی سیستم‌ها و مرتبط كردن مشتريان با تمامي عمليات بانكي 39
2-7-5- بانكداري الكترونيك 39
2-8- داده‌کاوی 40
2-8-1- مقايسه روش‌های آماری و داده‌کاوی 40
2-8-2- مفهوم داده‌کاوی 42
2-8-3- داده‌کاوی و کشف دانش 44
2-8-4- فرايند داده‌کاوی 45
2-8-5- معرفی روش‌های داده‌کاوی 51
2-8-5-1- دسته‌بندی 53
2-8-5-2- درخت تصمیم 53
2-8-5-3- شبکه‌های عصبی 55
2-8-5-4- پیش بینی 56
2-8-5-5- خوشه‌بندی 56
2-8-5-5- انواع خوشه‌بندی 57
2-8-5-5-2- معیارهای ارزیابی در خوشه‌بندی 59
2-8-5-6- تحلیل انحراف 60
2-8-5-7- قواعد وابستگی (انجمنی) 61
2-8-5-8- تحلیل توالی 61
2-8-6- نرم‌افزار داده‌کاوی 62
2-8-7- کاربردهای داده‌کاوی 63
2-8-7-1- داده‌کاوی در صنعت بانكداری 63
2-9- پیشینه تحقیق 65
2-9-1- کاربرد داده‌کاوی در بخش‌بندی و مدل‌سازی رفتاری مشتریان در صنعت بانکداری 66
2-9-2- کاربرد داده‌کاوی در ارزیابی اعتبار مشتریان 68
2-9-3- کاربرد داده‌کاوی در زمینه کشف تقلب 69
2-9-4- کاربرد داده‌کاوی در تحلیل روی‌گردانی مشتری 69
2-10- جمع‌بندی مطالب فصل 74
فصل سوم 76
3-1- مقدمه 77
3-2- روش پیشنهادی 77
3-2-1- چارچوب تحقیق 77
3-2-2- انتخاب متغیرها 79
3-2-3- آماده‌سازی و پیش‌پردازش داده‌ها 80
3-2-3-1- نرمال سازی داده‌ها 81
3-2-4- تعیین تعداد بهینه خوشه‌ها 81
3-2-5- خوشه‌بندی 82
3-2-5-1- انواع خوشه‌بندی 83
3-2-5-2- خوشه‌بندی به روش K-Means 84
3-2-5-1-1- مزایای استفاده از الگوریتم خوشه‌بندی K-Means 85
3-2-5-1-2- محدودیت‌های الگوریتم K-Means 85
3-2-5-2- خوشه‌بندی به روش WK-Means 86
3-2-5-3- خوشه‌بندی به روش A-H-Means 87
3-2-6- ارزیابی خوشه‌ها به روش مجموع مربع خطاها و انتخاب بهترین روش 88
3-2-7- به‌کارگیری دانش حاصل از خوشه‌بندی 90
3-3- روش‌های جمع آوری اطلاعات 90
3-4- جمع‌بندی مطالب فصل 90
فصل چهارم 92
4-1- مقدمه 93
4-2- معرفی بانک مهر اقتصاد 93
4-3- موضوع و فعالیت بانک 94
4-4- محاسبات تحقیق 94
4-4-1- گام انتخاب و جمع آوری متغیرهای ورودی 95
4-4-2- گام آماده‌سازی و پیش‌پردازش داده‌ها 96
4-4-3-گام تعیین تعداد بهینه خوشه‌ها 97
4-4-4- گام خوشه‌بندی داده‌ها 97
4-4-4-1- خوشه‌بندی به روش K-Means 98
4-4-4-2- خوشه‌بندی به روش WK-Means 100
4-4-4-3- خوشه‌بندی به روش A-H-Means 100
4-4-5- ارزیابی خوشه‌ها به روش مجموع مربع خطاها و انتخاب بهترین روش 101
4-4-6-گام به‌کارگیری دانش حاصل از خوشه‌بندی 102
4-5- نتایج تحقیق 104
4-6- جمع‌بندی مطالب فصل 106
فصل پنجم 107
5-1- مقدمه 108
5-2- خلاصه تحقیق 108
5-3- نتیجه‌گیری 109
5-4- زمینه‌های پیشنهادی، راهکارها و پیشنهاد‌ات جهت پژوهش‌های آتی 110
منابع و مآخذ 126

فهرست جدول‌ها
جدول 2-1 انواع مختلف تبدیلات دانش 19
جدول 2-2 مقایسه مفاهیم مدیریت دانش، مدیریت ارتباط با مشتری و مدیریت دانش مشتری 35
جدول 2-3 مقایسه روش‌های تحلیل آماری و داده‌کاوی 41
جدول 2-4 فعالیت‌های مربوط به فازهای CRISP-DM و خروجی هر فعالیت 50
جدول 2-5 نمونه داده‌های مورد نیاز در یک مسئله مدل‌سازی به روش دسته‌بندی 54
جدول 2-6 معیارهای محاسبه شباهت در خوشه‌بندی 59
جدول 2-7 معیارهای محاسبه فاصله در خوشه‌بندی 60
جدول 2-8 پژوهش‌های انجام‌گرفته در زمینه کاربرد داده‌کاوی در صنعت بانکداری 71
جدول 3-1 متغیرهای تحقیق 80
جدول 4-1 نمونه ده‌تایی از داده‌های مربوط به مشتریان بانک مهر اقتصاد 95
جدول 4-2 متغیرهای نرمال شده 96
جدول 4-3 وزن نسبی متغیرهای تحقیق 100
جدول 4-5 مقادیر مجموع مربع خطاها در الگوریتم‌های مختلف خوشه‌بندی 101
جدول 4-6 دسته‌بندی مشتریان بر مبنای ویژگی‌های رفتاری مشابه 103
جدول 4-7 اطلاعات مربوط به خوشه‌بندی مشتریان بانک مهر اقتصاد به روش K-Means 104

فهرست تصاویر و نمودارها
شکل 2-1 سلسله‌مراتب دانش 16
شکل 2-2 دانش صریح فقط بخش کوچکی از دانش را تشکیل می‌دهد. 17
شکل 2-3 مدل مدیریت دانش پروبست و رمهارد 22
شکل 2-4 چارچوب خوشه انگور جهت نوع شناسی دانش مشتری 26
شکل 2-5 مدل مدیریت دانش مشتری 28
شکل 2-7 گام‌های فرایند تولید دانش از پایگاه داده‌ها 44
شکل 2-8 متدولوژي فرآيند استاندارد ميان صنعتي داده‌کاوی (CRISP-DM) 47
شکل 2-9 دسته‌بندی کلی عملکردهای داده‌کاوی 52
شکل 2-11 نیروهای رقابتی پورتر 64
شکل 3-1 چارچوب تحقیق 78
شکل 4-1 خوشه اول، الگوریتم K-Means 98
شکل 4-2 خوشه دوم، الگوریتم K-Means 98
شکل 4-3 خوشه سوم، الگوریتم K-Means 99
شکل 4-4 خوشه چهارم، الگوریتم K-Means 99
شکل 4-5 خوشه پنجم، الگوریتم K-Means 99

فصل اول
مقدمه و کلیات تحقیق

1-1- مقدمه
در سالهای اخیر دانش1 به عنوان منبعی ارزشمند در کنار منابعی چون کار، زمین، سرمایه قرار گرفت و به عنوان موتور تولیدکننده درآمد و يك دارايي مهم و راهبُردی برای سازمان شناخته شد. از طرفی به دلیل وجود رقابت شدید در بین کسب و کارهای امروزی از جمله صنعت بانکداری، مشتری و توجه به جایگاه او و ارتباط با او اهمیت ویژهای یافته است. بنابراین مبحث بسیار مهم مدیریت دانش مشتری2 مطرح گردید که امروزه مطالعات بسیار زیادی را به خود اختصاص داده است. مدیریت دانش مشتری با استفاده از راهکارهای مختلف مدیریت دانش نظیر روش‌های داده‌کاوی3 زمینه بسیار خوبی را جهت استفاده مفید از گنجینه گران‌بهای دانش مشتری فراهم میآورد.
از سوی دیگر در عصر حاضر بهرهگیری از فناوریهای نوین اطلاعات و ارتباطات در عرصههای مختلف کسبوکار به امری گریزناپذیر مبدل گشته است. به طور خاص صنعت بانکداری از جمله صنایعی است که به‌کارگیری فناوریهای روز دنیا در این صنعت میتواند مزیت رقابتی انکارناپذیری را برای آن ایجاد نماید. بنابراین این صنعت نیز از بهرهگیری از بروزترین فناوریها مستثنا نبوده و مواردی مانند بانکداری الکترونیک، سیستم‌های یکپارچه بانکداری4، دستگاههای خودپرداز، کارتهای اعتباری، پایانههای خرید الکترونیک و… از مصادیق این امر میباشد.
ورود فناوریهای جدید به سازمان سبب افزایش چشمگیر سرعت تولید اطلاعات و در نتیجه بر جای ماندن حجم عظیمی از داده‌ها گشته است. از آنجا که این داده‌ها اغلب حجیم و وسیع میباشند، معمولاً به صورت خام قابل‌استفاده نیستند، بلکه دانش موجود در آنها باید استخراج گردد. با این وجود که ارزش این داده‌ها بر کسی پوشیده نیست، حجم بسیار بالای داده‌های ارزشمند موجود، تحلیل و بهرهگیری از آنها را به امری چالش‌برانگیز مبدل ساخته است. چرا که تحلیل به واسطه روش‌های گزارش گیری سنتی در این مقیاس امکانپذیر نیست و روش‌های آماری موجود نیز از ظرفیت کافی جهت تحلیل این داده‌ها برخوردار نمیباشند. بنابراین باید به دنبال راهکاری بود که با غلبه بر این محدودیت، امکان انجام مطالعاتی جامعتر با نتایج دقیقتر و درصد خطای پایینتر را ممکن سازد. این مسئله گواهی بر لزوم به‌کارگیری روش‌های نوین تحلیل داده‌ها جهت حصول دانش، نظیر روش داده‌کاوی خواهد بود.
دانش قابل توجهی که در زمان استفاده از خدمت یا مصرف کالا توسط مشتری، بین مشتری و سازمان تبادل میشود، به عنوان منبعی مهم برای سازمان شناخته میشود و کسب و بهرهبرداری از آن به یک مزیت رقابتی در سازمانها تبدیل شده است.
مدیریت دانش مشتری دربردارنده فرایندهاییست که با شناسایی و اکتساب اطلاعات مشتری و نیز ایجاد و بهرهبرداری از دانش مشتریان، مربوط است [9]. چنین اطلاعاتی در ماورای محدودههای خارجی سازمان قرار دارند و دانشی که از آنها استخراج میشود موجب ایجاد ارزش برای سازمان و مشتریان آن خواهد شد [32]. در این تحقیق مسئولیت کشف دانش بر عهده الگوریتم‌های داده‌کاوی خواهد بود. در ادامه از این دانش به عنوان راهنما در مسیر اتخاذ استراتژی‌های سازمان، بهرهگیری میشود.
1-2- تعريف مسئله
بااهمیت یافتن مشتری در عرصه پرتلاطم رقابت میان کسبوکارهای مباحثی همچون مدیریت دانش مشتری و مدیریت ارتباط با مشتری مطالعات و تحقیقات فراوانی را به خود اختصاص دادهاند.
مديريت دانش، كسب دانش درست، براي افراد مناسب، در زمان صحيح و مکان مناسب است، به گونه‌اي که آنان بتوانند براي دستيابي به هدف‌هاي سازمان، بهترين استفاده را از دانش ببرند.
در تعریفی دیگر مديريت دانش فرايند كشف، كسب، توسعه و ايجاد، تسهيم، نگهداري، ارزيابي و به‌کارگیری دانش مناسب در زمان مناسب توسط فرد مناسب در سازمان، که از طريق ايجاد پيوند مناسب بين منابع انساني، فناوري اطلاعات و ايجاد ساختاری مناسب براي دستيابي به اهداف سازماني صورت مي‌پذيرد، تعریف شده است.
مدیریت ارتباط با مشتری5 از جمله راهکارهایی است که در سالهای اخیر با افزایش روزافزون سطح رقابت در بازار به عنوان سلاحی ارزشمند در جهت افزایش وفاداری مشتری و جلب رضایت او و با هدف به ارمغان آوردن مزیت رقابتی بالاتر برای سازمان، از سوی سازمانها بکار گرفته شده است. امروزه بیشتر روش‌های مدیریت ارتباط با مشتری مبتنی بر فناوری اطلاعات میباشند و مسلماً برای رسیدن به مدیریت مؤثر ارتباط با مشتری ناگزیر از مدیریت دانش مشتری خواهیم بود.
مديريت ارتباط با مشتری در برگيرنده مجموعهاي از فرايندهاست که سازمانها را قادر ميسازد تا از استراتژيهاي كسبوكار در جهت ايجاد روابط بلندمدت و سودآور با مشتريان خاص پشتيباني نمايند [46].
در حقیقت CRM يك فناوری پيشرفته در جهت دستيابي به قلههاي اطلاعات مشتري است [G] و شركتها از آن به عنوان ابزاری در جهت افزايش رضايتمندي مشتري استفاده ميكنند. مديريت ارتباط با مشتري به عنوان فعالیتی جهت گسترش و نگاه‌داری مشتريان سازمانها به طور گستردهاي مورد توجه قرار گرفته است و ابزارهاي آن افزايش رضايت مشتري و وفاداري اوست. همچنين مديريت دانش KM همچون مديريت روابط با مشتري بر جمع آوری منابعي تأكيد دارد كه از فعاليتهاي تجاري در جهت رسيدن به توانايي رقابت‌پذیری حمايت ميكند [37] براي بهبود روابط با مشتري، خدمات‌رسانی به روشي كه مورد دلخواه اوست، ضروري است. از اين رو به مديريت دانش مشتری احتياج است [17].
امروزه حجم بالای پایگاههای داده و پراکندگی و عدم به‌کارگیری راهکارهای مناسب جهت تحلیل این داده‌ها مطالعه و تصمیمگیری بهینه پیرامون ارتباط با مشتریان را با مشکل مواجه نموده است.
به طور ویژه بانکها سازمانهایی هستند که با مشتریان تعامل مستقیم دارند و عنصر مشتری در این سازمانها اهمیت ویژهای دارد. بدیهی است جهت پیشرو بودن در عرصه رقابت توجه به جایگاه مشتری و اختصاص خدمات ویژه با تشخیص نیازمندیهای آن‌ها و ارائه خدمات درست به آنها محقق خواهد شد. تحلیل منابع باارزش دادهای در رابطه با مشتریان کنونی بانکها و مشتریان

پایان نامه
Previous Entries B(m)، Z=1، خاکS-2 Next Entries منابع پایان نامه درباره مدیریت دانش، تحلیل داده، سودآوری