پایان نامه با واژه های کلیدی زمین لرزه، مقاوم سازی، دینامیکی

دانلود پایان نامه ارشد

……………………………………………………………………………………………………………………………………………………………………………….133
شکل 5-60: نمودار تاریخچه زمانی جابجایی پایه p2 تحت زلزلهManjil سطح خطر 2 در جهت عرضی. ……………………………………………………………………………………………………………………………………………………………………………….134
شکل 5-61: نمودار تاریخچه زمانی جابجایی پایه p2 تحت زلزلهManjil سطح خطر 2 در جهت طولی. ……………………………………………………………………………………………………………………………………………………………………………….134
شکل 5-62: نمودار تاریخچه زمانی جابجایی پایه p3 تحت زلزلهManjil سطح خطر 2 در جهت عرضی. ……………………………………………………………………………………………………………………………………………………………………………….135
شکل 5-63: نمودار تاریخچه زمانی جابجایی پایه p3 تحت زلزلهManjil سطح خطر 2 در جهت طولی. ……………………………………………………………………………………………………………………………………………………………………………….135
شکل 5-64: نمودار تاریخچه زمانی جابجایی پایه p5 تحت زلزلهManjil سطح خطر 2 در جهت عرضی. ……………………………………………………………………………………………………………………………………………………………………………….136
شکل 5-65: نمودار تاریخچه زمانی جابجایی پایه p5 تحت زلزلهManjil سطح خطر 2 در جهت طولی. ……………………………………………………………………………………………………………………………………………………………………………….136
شکل 5-66: نمودار تاریخچه زمانی جابجایی پایه p6 تحت زلزلهManjil سطح خطر 2 در جهت عرضی. ……………………………………………………………………………………………………………………………………………………………………………….137
شکل 5-67: نمودار تاریخچه زمانی جابجایی پایه p6 تحت زلزلهManjil سطح خطر 2 در جهت طولی. ……………………………………………………………………………………………………………………………………………………………………………….137
شکل 5-68: نمودار انرژی- زمان قاب1 تحت زلزله chi-chi ، سطح خطر 1. ………………………………………………….138
شکل 5-69: نمودار انرژی- زمان قاب 2 تحت زلزله chi-chi ، سطح خطر 1. ………………………………………………….138
شکل 5-70: نمودار انرژی- زمان قاب 3 تحت زلزله chi-chi ، سطح خطر 1. ………………………………………………….139
شکل 5-71: نمودار انرژی- زمان قاب 5 تحت زلزله chi-chi ، سطح خطر 1. ………………………………………………….139
شکل 5-72: نمودار انرژی- زمان قاب 6 تحت زلزله chi-chi ، سطح خطر 1. ………………………………………………….140
شکل 5-73: نمودار انرژی- زمان قاب 1 تحت زلزله Northridge، سطح خطر 1. …………………………………………..140
شکل 5-74: نمودار انرژی- زمان قاب 2 تحت زلزله Northridge، سطح خطر 1. …………………………………………..141
شکل 5-75: نمودار انرژی- زمان قاب 3 تحت زلزله Northridge، سطح خطر 1. …………………………………………..141
شکل 5-76: نمودار انرژی- زمان قاب 5 تحت زلزله Northridge، سطح خطر 1. …………………………………………..142
شکل 5-77: نمودار انرژی- زمان قاب 6 تحت زلزله Northridge، سطح خطر 1. …………………………………………..142
شکل 5-78: نمودار انرژی- زمان قاب 1 تحت زلزله Manjil، سطح خطر 1. …………………………………………………..143
شکل 5-79 نمودار انرژی- زمان قاب 2 تحت زلزلهManjil ، سطح خطر 1. …………………………………………………….143
شکل 5-80: نمودار انرژی- زمان قاب 3 تحت زلزله Manjil، سطح خطر 1. ………………………………………………….144
شکل 5-81: نمودار انرژی- زمان قاب 5 تحت زلزله Manjil، سطح خطر 1. ……………………………………………………144
شکل 5-82: نمودار انرژی- زمان قاب 6 تحت زلزلهManjil ، سطح خطر 1. ……………………………………………………145
شکل 5-83: نمودار انرژی- زمان قاب 1 تحت زلزله chi-chi ، سطح خطر 2. ………………………………………………….145
شکل 5-84: نمودار انرژی- زمان قاب 2 تحت زلزله chi-chi ، سطح خطر 2. ………………………………………………….146
شکل 5-85: نمودار انرژی- زمان قاب 3 تحت زلزله chi-chi ، سطح خطر 2. ………………………………………………….146
شکل 5-86: نمودار انرژی- زمان قاب 5 تحت زلزله chi-chi ، سطح خطر 2. ………………………………………………….147
شکل 5-87: نمودار انرژی- زمان قاب 6 تحت زلزله chi-chi ، سطح خطر 2. ………………………………………………….147
شکل 5-88: نمودار انرژی- زمان قاب 1 تحت زلزله Northridge، سطح خطر 2. …………………………………………..148
شکل 5-89: نمودار انرژی- زمان قاب 2 تحت زلزله Northridge، سطح خطر 2. …………………………………………..148
شکل 5-90: نمودار انرژی- زمان قاب 3 تحت زلزله Northridge، سطح خطر 2……………………………………………..149
شکل 5-91: نمودار انرژی- زمان قاب 5 تحت زلزله Northridge، سطح خطر 2 ……………………………………………149
شکل 5-92: نمودار انرژی- زمان قاب 6 تحت زلزله Northridge، سطح خطر 2. …………………………………………..150
شکل 5-93: نمودار انرژی- زمان قاب 1 تحت زلزله Manjil، سطح خطر 2. …………………………………………………..150
شکل 5-94: نمودار انرژی- زمان قاب 2 تحت زلزلهManjil ، سطح خطر 2. …………………………………………………..151
شکل 5-95: نمودار انرژی- زمان قاب 3 تحت زلزله Manjil، سطح خطر 2. …………………………………………………..151
شکل 5-96: نمودار انرژی- زمان قاب 5 تحت زلزله Manjil، سطح خطر 2. …………………………………………………..152
شکل 5-97: نمودار انرژی- زمان قاب 6 تحت زلزلهManjil ، سطح خطر 2. …………………………………………………..152

فصل اول
کلیات

مقدمه
زمین لرزه پدیده ای طبیعی و غیر قابل اجتناب است که به خودی خود سبب تلفات جانی و مالی نمی باشد، بلکه در کنش حرکات زمین با محیط های ساخته ی دست بشر است که عدم توانایی در مقاومت ساخته ها باعث خسارت جدی می شود. در پی زمین لرزه ها علاوه بر تلفات جانی، ثروت ملی نیز به هدر رفته و بار مالی زیادی بر اقتصاد کشورها بوجود می آید که این امر در مورد کشور هایی با اقتصاد زودشکن اثرات جدی و دراز مدت به جا می گذارد (ناطق الهی،1390).
كشور ايران از نظر لرزه خيزي در يكي از فعال ترين مناطق جهان قرار گرفته است. در سالهاي اخير به طور متوسط در هر پنج سال يك زمين لرزه شديد در نقطه اي ازكشور اتفاق افتاده كه باعث خسارات جاني و مالي بسياري شده است (حمره، 1387)، پل ها به عنوان سازه های استراتژیک ومهم و به واسطه آن که یکی از عناصر مهم در شریان های حیاتی هستند، باید به گونه ای طراحی شوند که در مدت زلزله و بعد از آن هم بتواند عملکرد خود را داشته باشد، عدم تخریب پل و خارج نشدن از بهره برداری پس ازیک زمین لرزه شدید ازبسیاری تلفات جانی و اقتصادی پس از حادثه خواهد کاست (زارع برزشی، 1391).
در چند دهه گذشته بموازات توسعه راه های کشور حجم قابل توجهی از بودجه های مربوطه جهت پل ها اختصاص یافته است. متاسفانه علی رغم پیشرفت های فن آوری در مهندسی مواد هنوز این سازه ها با گذشت زمان به دلایل مختلف از جمله شرایط محیطی نامناسب و ترافیک سنگین و حوادث طبیعی دچار خرابی های متعددی می شوند. این خرابی ها در صورت عدم توجه به موقع علاوه بر کاهش سطح بهره برداری و عمر مفید سازه هزینه های تعمیر و نگهداری را شدیدا افزایش خواهد داد. که اهمیت بکارگیری روشهای منطقی و سینماتیک در مدیریت نگهداری پل ها به منظور حفظ ایمنی استفاده کنندگان از پل و جلوگیری از هدر رفتن سرمایه های کشور را نمایان می سازد (رهگذر،1387). بنابراین دست یابی به روش یا روش هایی جهت بهسازی لرزه ای پل هایی که در برابر زلزله به اندازه کافی مقاوم نیستند می تواند بسیار مهم باشد (مرادی، 1390).
برای بهسازی، روش های مختلفی مانند مرمت موضعی، استفاده از پوشش بتنی، استفاده از پوشش فولادی و غیره تحت عنوان “ روش های کلاسیک ” وجود دارد. یکی از روش های نوینی که در سال های اخیر مورد توجه صنعتگران قرار گرفته است، مقاوم سازی یا بهسازی ساختمان های موجود با استفاده از کامپوزیت ها می باشد. در این زمینه تحقیقات زیادی صورت گرفته و آیین نامه هایی مقدماتی نیز برای استفاده از آنها تهیه شده است (ناطق الهی، 1385). اين مواد به دليل داشتن مقاومت كششي بالا، ابزار مناسبي جهت افزايش ظرفيت اعضاي بتني و بنايي به شمار مي آيند. امروزه دركشورهاي پيشرفته حجم بالايي از بهسازي و تقويت سازه هاي بتني و بنايي با استفاده از اين مواد انجام مي پذيرد (حمره، 1387).
1-2- بیان مسئله
در اين پايان نامه به مقاوم سازی پایه پل های بتنی با ورقFRP تحت بار دینامیکی زلزله پرداخته خواهد شد، پایه های پل با ابعاد واقعی ومحصور شده با FRR درنرم افزار ABAQUS مدل سازی می شود، برای تحلیل پایه تحت بار زلزله از تحلیل دینامیکی غیر خطی استفاده شده است تا اثرFRP بر روی پایه های پلی که تحت شتاب نگاشت هستند مورد بررسی قرار گیرد.

1-3- پیشینه تحقیق
تكنولوژي استفاده از ورق هايFRP در مهندسي عمران اولين بار در سال 1984در سوئيس توسط پروفسورMeier مطرح و مورد آزمايش قرار گرفت كه در آن ورق هاي Carbon FRP (CFRP) جهت مقاوم سازي تيرهاي بتني آزمايش شدند. بزرگ ترين مزيت FRPنسبت به فولاد داشتن نسبت مقاومت به وزن بالاي آن مي باشد. كاتسوماتا و همكارانش در سال1987 و 1988 روش استفاده ازFRP را جهت مقاوم سازي ستون هاي بتني مسلح ارائه دادند.
یکی از روش های معمول جهت مقاوم سازی و افزایش ظرفیت باربری ستون های بتن آرمه، ایجاد روپوش پیرامونی، جهت محدود نمودن انبساط عرضی ستون بارگذاری شده است. این شیوه علاوه بر جلوگیری ازکمانش آرماتورهای طولی ستون، با

پایان نامه
Previous Entries منابع پایان نامه با موضوع يادگيري، سبك، موقعيت Next Entries منابع پایان نامه با موضوع اقتصاد دانش محور، اقتصاد دانش، توسعه دانش