
0.009 0.160 0.520 0.227 N
T 46 0.254 0.160 0.478 0.247 N
L 47 0.020 0.000 0.479 0.132 N
S 48 0.035 0.160 0.428 0.149 N
N 49 0.019 0.160 0.452 0.111 N
T 50 0.759 0.000 0.444 0.149 N
S 51 0.844 0.000 0.448 0.324 N
I 52 0.097 0.000 0.412 0.075 N
D 53 0.010 0.160 0.430 0.203 N
T 54 0.915 0.160 0.451 0.179 N
V 55 0.853 0.160 0.476 0.324 N
S 56 0.000 0.330 0.469 0.000 –
I 57 0.140 0.330 0.495 0.226 N
A 58 0.014 0.160 0.498 0.116 N
S 59 0.000 0.000 0.476 0.000 –
T 60 0.790 0.000 0.457 0.125 N
N 61 0.000 0.000 0.537 0.000 –
V 62 0.111 0.000 0.446 0.090 N
S 63 0.000 0.000 0.452 0.000 –
D 64 0.087 0.000 0.433 0.137 N
T 65 0.025 0.000 0.464 0.030 N
S 66 0.093 0.000 0.434 0.064 N
K 67 0.005 0.000 0.490 0.063 N
N 68 0.005 0.000 0.480 0.104 N
G 69 0.000 0.000 0.485 0.000 –
T 70 0.000 0.000 0.495 0.000 –
V 71 0.000 0.000 0.566 0.000 –
T 72 0.235 0.000 0.544 0.054 N
F 73 0.000 0.000 0.660 0.000 –
A 74 0.020 0.000 0.600 0.083 N
H 75 0.000 0.000 0.515 0.000 –
E 76 0.854 0.000 0.540 0.189 N
T 77 0.957 0.000 0.450 0.188 N
N 78 0.338 0.000 0.456 0.122 N
N 79 0.973 0.000 0.486 0.141 N
S 80 0.965 0.000 0.552 0.187 N
A 81 0.106 0.000 0.587 0.210 N
S 82 0.117 0.000 0.601 0.015 N
F 83 0.430 0.000 0.671 0.085 N
A 84 0.000 0.000 0.550 0.000 –
T 85 0.000 0.000 0.610 0.000 –
T 86 0.027 0.490 0.536 0.448 P
I 87 0.000 0.490 0.552 0.000 –
S 88 0.000 0.160 0.517 0.000 –
T 89 0.695 0.490 0.541 0.445 P
D 90 0.855 0.660 0.551 0.477 P
N 91 0.067 0.490 0.538 0.421 P
A 92 0.818 0.660 0.504 0.504 P
N 93 0.027 0.660 0.491 0.507 P
I 94 0.881 0.830 0.468 0.534 P
T 95 0.000 0.660 0.460 0.000 –
L 96 0.000 0.990 0.536 0.000 –
D 97 0.000 0.490 0.464 0.000 –
K 98 0.009 0.160 0.494 0.141 N
N 99 0.000 0.000 0.474 0.000 –
A 100 0.027 0.000 0.463 0.092 N
G 101 0.005 0.000 0.483 0.051 N
N 102 0.076 0.160 0.479 0.208 N
T 103 0.702 0.330 0.455 0.380 P
I 104 0.851 0.330 0.470 0.352 P
V 105 0.875 0.660 0.449 0.541 P
K 106 0.015 0.830 0.453 0.485 P
T 107 0.017 0.330 0.454 0.311 N
T 108 0.685 0.330 0.479 0.365 P
N 109 0.012 0.330 0.468 0.250 N
G 110 0.000 0.160 0.445 0.000 –
S 111 0.034 0.160 0.428 0.256 N
Q 112 0.000 0.330 0.441 0.000 –
L 113 0.000 0.000 0.414 0.000 –
P 114 0.109 0.000 0.388 0.140 N
T 115 0.051 0.160 0.429 0.158 N
N 116 0.073 0.160 0.430 0.181 N
L 117 0.535 0.160 0.441 0.185 N
P 118 0.000 0.490 0.451 0.000 –
L 119 0.025 0.660 0.516 0.376 P
K 120 0.000 0.490 0.502 0.000 –
F 121 0.114 0.830 0.568 0.447 P
I 122 0.000 0.000 0.598 0.000 –
T 123 0.049 0.490 0.566 0.363 P
T 124 0.036 0.330 0.569 0.246 N
E 125 0.036 0.160 0.541 0.146 N
G 126 0.006 0.000 0.586 0.157 N
N 127 0.009 0.000 0.610 0.015 N
E 128 0.005 0.000 0.573 0.112 N
H 129 0.958 0.000 0.548 0.192 N
L 130 0.972 0.000 0.597 0.166 N
V 131 0.861 0.000 0.561 0.212 N
S 132 0.032 0.000 0.576 0.149 N
G 133 0.154 0.000 0.614 0.211 N
N 134 0.170 0.000 0.584 0.155 N
Y 135 0.025 0.000 0.656 0.181 N
R 136 0.833 0.000 0.606 0.175 N
A 137 0.079 0.000 0.579 0.075 N
N 138 0.022 0.000 0.500 0.089 N
I 139 0.890 0.000 0.529 0.182 N
T 140 0.916 0.000 0.424 0.122 N
I 141 0.872 0.160 0.465 0.197 N
T 142 0.101 0.000 0.423 0.084 N
پیشگویی با روش meta-PPISP
Column 1: AA (Amino Acid code)
Column 2: Ch (Chain ID)
Column 3: AA# (Amino Acid number)
Column 4-7: Prediction scores of cons-PPISP, PINUP, Promate, and meta-PPISP Note: PINUP and Promate scores are scaled by 100
Column 8: Prediction of whether the residue is in an interface (P = Positive; N = Negative; – = Burried and not predicted)
(Note: P corresponds to a score 0.34 in 7th column; user may set a
different threshold for positive prediction.)
پیشگویی با روشcons-PPISP
Column 1: AA (Amino Acid code)
Column 2: Ch (Chain ID)
Column 3: AA# (Amino Acid number)
Column 4: Score (neural network score)
Column 5: Prediction of whether the residue contacts (P = Positive; N = Negative; – = Burried and not predicted)
پیوست 8- توالیهای بدست آمده با استفاد از تکنیک تعیین توالی و نتیجه بررسی همسانی آنها با ژنهای اصلی که در ادامه آورده شده است.
CLUSTAL 2.1 multiple sequence alignment
38.experimental.construct CACGCCNTNGNGACNGNCGANGCNNTCGGNAATGGNCGATACGTATACTG 100
38.teoretical.construct —————————————-ACGTATACTG 10
**********
38.experimental.construct TTGNTCTTAACGTNACCAGTAATGTTATTN-AAGTGAATGTATGAGGGGA 149
38.teoretical.construct TTGGTCTTAACGTAACCAGTAATGTTATTTAAAGTGAATGTATGAGGG-A 59
***.********* ***************. ***************** *
38.experimental.construct TTCGATGTTAAAAATAAAATACT-ATTAATAGGTCTTTCACTGTCAGNTA 198
38.teoretical.construct TTCGATGTTAAAAATAAAATACTTATTAATAGGTCTTTCACTGTCAGCTA 109
*********************** *********************** **
38.experimental.construct TGAGTTCATACTCACTANNTGCAGCGGGGNCCACTCTAACCAAAGAACTG 248
38.teoretical.construct TGAGTTCATACTCACTAGCTGCAGCGGGGCCCACTCTAACCAAAGAACTG 159
*****************. ********** ********************
38.experimental.construct GCATTAAATGTGCTTTCTCNTGCAGCTCNGGATGCAACTTGGGCTCCTCA 298
38.teoretical.construct GCATTAAATGTGCTTTCTCCTGCAGCTCTGGATGCAACTTGGGCTCCTCA 209
******************* ********.*********************
38.experimental.construct GGATAATTTAACATTATCCAATACTGGCGTTTCTGTTGATGGATTAAGCT 348
38.teoretical.construct GGATAATTTAACATTATCCAATACTGGCGTTTCTGTTGATGGATTAAGCT 259
**************************************************
38.experimental.construct GTACAAATTGTGNGGCCAAATTTGAACGGAATGTAAAAGAAATTGAGGGT 398
38.teoretical.construct GTACAAATTGTGCGGCCAAATTTGAACGGAATGTAAAAGAAATTGAGGGT 309
************ *************************************
38.experimental.construct GTAACAGAAGCTATTAATACTTTGGTGGGTGTTTTGACTCTTTCAAATAC 448
38.teoretical.construct GTAACAGAAGCTATTAATACTTTGGTGGGTGTTTTGACTCTTTCAAATAC 359
**************************************************
38.experimental.construct CAGTATTGATACAGTTAGCATTGCGAGTACAAATGTTTCTGATACATCTA 498
38.teoretical.construct CAGTATTGATACAGTTAGCATTGCGAGTACAAATGTTTCTGATACATCTA 409
**************************************************
38.experimental.construct AGAATGGTACAGTAACTTTTGCACATGAGACAAATAACTNTNCTAGCTTT 548
38.teoretical.construct AGAATGGTACAGTAACTTTTGCACATGAGACAAATAACTCTGCTAGCTTT 459
*************************************** *.********
38.experimental.construct GCCACCACCATTTCAACAGANAANGCCAACATTACGTTGGATAAAAATGC 598
38.teoretical.construct GCCACCACCATTTCAACAGATAATGCCAACATTACGTTGGATAAAAATGC 509
********************.**.**************************
38.experimental.construct TGGAAATACGATTGTTAAAACTACAAATGGGAGTCAGTTGCCAACTAATT 648
38.teoretical.construct TGGAAATACGATTGTTAAAACTACAAATGGGAGTCAGTTGCCAACTAATT 559
**************************************************
38.experimental.construct TACCACTTAAGTTTATTACCACTGAAGGTAACGAACATTTAGTTTCAGGT 698
38.teoretical.construct TACCACTTAAGTTTATTACCACTGAAGGTAACGAACATTTAGTTTCAGGT 609
**************************************************
38.experimental.construct AATTNCCGTGCAAATATAACAATTACTTNGACAATTAAATAATTATATAA 748
38.teoretical.construct AATTACCGTGCAAATATAACAATTACTTCGACAATTAAATAATTATATAA 659
**** *********************** *********************
38.experimental.construct TAGACGTAGCCTTCGAAATAAAGGNTACGTTGCTATCTTTATGTTTGTGA 798
38.teoretical.construct TAGACGTAGCCTTCGAAATAAAGGCTACGTTGCTATCTTTATGTTTGTGA 709
************************ *************************
38.experimental.construct
