منبع پایان نامه با موضوع هم افزایی، دی اکسید کربن، سیستم تنفسی

دانلود پایان نامه ارشد

ش گازهای بی اثر به مقدار زیاد خواهد شد گازهایی مثل بخار آب و دی اکسید کربن که این گازها نیز می توانند به درون شعله نفوذ کرده و غلظت مواد ناپایدار اشتعال پذیر، رادیکال های H و OH را کاهش و رقیق می کند. این رقیق کردن باعث کاهش دمای شعله شده که خود باعث نرخ تجزیه ماده کامپوزیتی می شود. دمای تجزیه پرکننده یک عامل بحرانی و مؤثر در تأخیر دهندگی اشتعال آنهاست. دمای تجزیه بایست بیشتر از دمای فرآیند آنهاست تا دیگر پرکننده در طول ساخت ماده کامپوزیتی تجزیه نشود. کامپوزیت های شامل رزین‌های ترموپلاستیک دما بالا، مانند پلی فنیلن سولفید20 یا پلی اتر اتر کتون21 بایت در دمای حدود 400-300 درجه سانتی گراد فرآیند شوند. بنابراین پرکننده های مورد استفاده برای این مواد باید در دماهای این محدوده تجزیه نشود. همچنین دمای تجزیه پرکننده بایست پایین تر از دمای پیرولیز ماتریس پلیمری باشد که بسیاری زرین ها مورد استفاده در کامپوزیت این دما بین 450-300 درجه سانتی گراد است. بسیاری از اکسیدهای فلزی22 و هیدروکسیدهای فلزی23 به عنوان تأخیر دهنده های اشتعال فعال مورد استفاده قرار می گیرد. در این بین معمول ترین و پر مصرف ترین آلومینیوم تری هیدراته Al(OH)3 است. همچنین انواع دیگر از اکسیدهای آلومینیوم نیز مورد استفاده است. همچنین ترکیبات اکسیده دیگر مثل ترکیبات آنتیموان (sb2o3,sh2o5)، آهن (مثل فروسن ferocene، FeOOH، FeOCl)، ترکیبات مولیبدنیوم (MoO3)، منزیم (Mg(OH)2) روی و تین tin قابل کاربرد است. به وسیله فعالیت این عناصر و پرکننده اشتعال و همچنین تشکیل دوده به مقدار قابل توجهی متوقف خواهد شد. اگرچه میزان تأثیر آنها به صورت کلی با افزایش غلظت آنها در ماتریس پلیمری افزایش خواهد یافت. مانند پرکننده های خنثی میزان بارگزاری بالایی از پرکننده (60-20%) جهت یک کاهش اساسی در اشتعال‌پذیری مورد نیاز است.عنصرهای پایه نیتروژن یکی از مؤثرترین تأخیر دهنده های اشتعال است این عنصر به همواره ترکیبات گوانیدین و ملاحین سال ها برای بهبود مقاومت اشتعال در پوشاک های پشمی، لباس های کتونی و کاغذ مورد استفاده بوده است. اما افزودنی های پایه نیتروژن به ندرت به عنوان تأخیردهنده اشتعال در کامپوزیت های پلیمری مورد استفاده قرار می‌گیرد.

پرکننده تأخیر دهنده اشتعال متورم شونده24
این نوع پر کننده جزء پرکننده های فعال هستند. این روش یکی از نوین ترین روش های بهبود مقاومت اشتعال مواد کامپوزیتی است. نمونه ای از این پرکننده ها پلی فسفات/ ؟؟؟ ترتیول است که در دماهای بالا متورم می شود. مکانیسم عملکرد این نوع پرکننده در کامپوزیت به صورت شماتیک در شکل 10-8 نشان داده شده است. زمانی که کامپوزیت تحت مجاورت شعله قرار می گیرد ذرات متورم شونده واکنش داده و مقدار زیادی گازهای غیر قابل اشتعال و غیر سمی که در ماتریس پلیمری گیر می افتد ایجاد می شود. تجمع این گازها باعث می شود که پلیمر نرم شده به فوم و پلیمر متورم شده تبدیل شود. در صورتی که ماتریس پلیمری قابلیت تبدیل به ذغال (char) را داشته باشد با افزایش دما ماتریس تجزیه شده و باعث تولید لایه ذغالی متخلخل عایق خواهد شد. این لایه ماده کامپوزیتی اصلی را حفظ و حمایت می کند. Kovar و همکاران[8]به این نتیجه رسیدند که فرآیند تولید فوم زمانی اتفاق خواهد افتاد که پلیمر در حالت ویسکوز نرم25 باشد. اگر ذرات پرکننده در دماهایی پایین‌تر از دمای انتقال شیشه پلیمر تجزیه شوند در این حالت ماتریس سخت26 خواهد بود و قابلیت تولید فوم و تورم را نخواهد داشت. در مقابل در صورتی که میزان فشار حاصل از تولید سریع گازها می تواند منجر به تولید شیار و لایه لایه شدن در کامپوزیت‌های سخت خواهد شد. در صورتی که تجزیه در دماهای بالا اتفاق افتد گازها می تواند از درون کامپوزیت خارج خواهد شد و لایه متورم شده ای تشکیل نخواهد شد. در صورتی که درجه بالایی از حمایت در برابر آتش را بخواهیم دمای واکنش تجزیه ذرات متورم شونده ها باید بالاتر از دمای انتقال شیشه و کمتر از دمای تجزیه ماتریس پلیمری باشد.

پلیمرهای تاخیر دهنده اشتعال قابل استفاده در کامپوزیت‌ها27
تعداد زیادی از پلیمرهای تأخیر دهنده اشتعال در حدود 26 سالی است که ارائه شده است و بسیاری از این موارد مناسب برای استفاده در کامپوزیت های لیفی است. اتصال مولکول های بروم، کلر یا فسفر به ساختار مولکولی پلیمر معمول ترین و رایج ترین روش بهبود مقاومت اشتعال رزین‌های ترموست و ترموپلاست است. یکی دیگر از روش‌های استفاده از پرکننده‌های در مقیاس نانو است که خیلی سریع تبدیل به یک گروه مهم از مواد تأخیر دهنده اشتعال شده است. یکی دیگر از روش ها نیز اصلاح شیمیایی ساختار شبکه‌ای مولکولی به وسیله کوپلیمریزاسیون پیوندی است.

افزایش مقاومت اشتعال به وسیله پلیمریزاسیون28
اصلاح ساختاری زنجیره های پلیمری یک تکنیک مؤثر برای بهبود مقاومت اشتعال‌پذیری است. [6]همانطور که قبلاً گفته شد پایداری حرارتی پلیمر به وسیله انرژی پیوندی29 میان اتم های روی زنجیره اصلی تعیین می شود. پلیمرهای شامل مقادیر زیاد هیدروژن، نیتروژن یا اکسیژن؛ اشتعال پذیری زیادی از خود نشان می دهند زیرا آنتالپی30 پیوندی پایینی با کربن دارند. پایداری حرارتی پلیمر می تواند به وسیله افزایش استحکام پیوندهای زنجیره افزایش داد. پایداری حرارتی می تواند به وسیله اتصال ساختارهای حلقه ای هتروسیکل31 و آروماتیک32 با انرژی های پایدارسازی رزنانسی بالا به درون زنجیره اصلی و کاهش حضور هیدروژن (H)، نیتروژن (N) و اکسیژن (O) افزایش داد. نه تنها دمای تجزیه پلیمر به وسیله این اصلاح ساختار افزایش می یابد بلکه درصد جرمی مواد ناپایدار قابل اشتعال کاهش می یابد که نرخ رهایش حرارت نیز پایین تر می آید.

شکل ‏22: رابطه میان مقادیر اروماتیک و میزان بقایای ذغال و گازهای ناپایدار. توسط Parker & Kourtide [1]
شکل ‏22 رابطه میان دانسیته گروه آروماتیک در زنجیره اصلی پلیمر33 در برابر میزان درصد گاز ناپایدار و ذغال [9] نشان می‌دهد. یک رابطه خطی میان دانسیته گروه های آروماتیک و میزان و کاهش خطی مواد ناپایدار وجود دارد.

شکل ‏23: رابطه میان بقایای ذغال و شاخص اکسیژن پلیمر و بقایای ذغال بعنوان جرم باقیمانده حاصل از آزمون TGA در دمای 800 درجه سانتیگراد در اتمسفر خنثی است. توسط Krevelan[10]
شکل ‏23 یک رابطه خطی میان میزان ذغال پلیمرها و پارامتر محدودیت اکسیژن که باعث کاهش میزان مواد ناپایدار اشتعال پذیر که عاملی برای استمرار احتراق است وجود دارد. [11]استحکام میان زنجیره ها نیز عامل مهم دیگری برای کنترل پایداری حرارتی پلیمرهای ترموست است. پلیمرهایی که می توانند یک ساختار شبکه ای 3 بعدی اتصال عرضی34 زیاد تشکیل دهند معمولاً پایداری حرارتی زیادی نشان می دهند زیرا شکست و تشکیل دوباره اتصالات عرضی باعث تشکیل ذغال خواهد شد. پلی فنیلن‌ها، پلی فنیلن اکسایدها نمونه و مثال هایی از پلیمرهای تأخیر دهنده اشتعال با قابلیت آروماتیک بالا و اتصال عرضی بالا می باشند. مشکل این پلیمرها دمای فرآیندپذیری بالا (نرم شدگی) می باشد.

کامپوزیت‌های پلیمری هالوژنه35
اصلاح شیمیایی پلیمرها به وسیله عناصر ارگانوهالوژن یکی از معمولترین و مؤثرترین روش های کاهش اشتعال پذیری مواد کامپوزیتی است. [2, 3, 5, 6, 12, 13]
عناصر پایه هالوژن شامل بروم و کلر تأخیردهنده‌های اشتعال فوق العاده‌ای هستند که به صورت فرآیند فاز گاز36 از اشتعال جلوگیری می کنند. (اختتام واکنش های اشتعال به وسیله حذف رادیکال H و OH واکنش با هالوژن) پلیمرهای هالوژنه به وسیله اتصال مولکول هالوژن به ساختار شبکه ای زرین از طریق کوپلیمریزاسیون تشکیل می شوند. مقدار برومیت بایست بیشتر از 20% وزنی باشد تا بتواند تأثیر مشخصی بر روی مقاومت اشتعال بگذارد. میزان کلرین برای بیشتر پلیمرها بایست بیشتر از مقدار 25 درصد وزنی باشد اگرچه افزایش کلرین بیشتر از این مقدار بر روی نتایج و بهبود آن تأثیر چندانی نخواهد گذاشت. پلیمرهای کلرین و برومینه را نیز می توان به همراه پرکننده های تأخیر دهنده اشتعال استفاده کرد که ترکیب پرکننده با هالوژن ها می تواند خاصیت های جمع پذیری37، غیر هم افزایی38 و هم افزایی39 بر روی خواص تأخیر دهنده اشتعال سیستم پلیمری بگذارد. اثر جمع پذیری زمانی اتفاق می افتد که بازده تأخیر دهنده اشتعال کل سیستم پلیمری برابر با ترکیبی از بازده های پرکننده و هالوژن است و برهمکش خاصی میان این دو جهت افزایش و کاهش اثرات تأخیر اشتعال وجود ندارد. نمونه این نوع اثر شامل پلیمرهای هالوژنه به همراه پر کننده های خنثی است. هالوژن مقاومت اشتعال پذیری را در فاز گاز افزایش می دهد در صورتی که پرکننده در فاز متراکم به عنوان کاهنده میزان سوخت پلیمری و جاذب حرارت عمل می کند. هر دو به صورت مستقل بر روی افزایش قابلیت اشتعال سیستم پلیمری عمل می کند. تأثیر غیر هم افزایی زمانی است که بازده سیستم پلیمری کمتر از بازده سیستم های افزودنی به طور مستقل است. هالوژن و پرکننده مزاحم واکنش های تأخیر اشتعال یکدیگر شده در نتیجه مقاومت اشتعال پذیری کلی پلیمر کاهش خواهد یافت. بهترین حالت زمانی اتفاق می افتد که پرکننده و تأخیر دهنده اشتعال و واکنش تأخیر اشتعال اثر هم افزایی می گذارند. زمانی این اتفاق می افتد که بازده کل سیستم پلیمری بیشتر از اثرات افزودنی هالوژن و یا پرکننده به تنهایی باشد. میزان گسترده ای از عناصر فعال می توانند به عنوان پرکننده‌های افزایی پلیمرهای هالوژنه استفاده شوند. این عناصر شامل اکسید بیسموت40 ، اکسید مولیبدنیوم41 ، اکسید تین42 هستند. اگرچه معمولاً از اکسید آنتیموان (sb2o3) استفاده می‌شود. این عنصر خاصیت ضد اشتعال پذیری کمی در زمان هایی که به تنهایی مصرف می شود (پلیمرهای غیرهالوژنه) دارد اما زمانی که از زرین های برومینه استفاده شود بازده تأخیر اشتعال به شدت افزایش می یابد. این افزایش به دلیل بر همکنش های هم افزایی میان مکانیزم های تأخیر دهنده اشتعال هالوژن و اکسید آنتیموان است. (واکنش مواد ناپایدار هالوژنه با مواد ناپایدار آنتیموان در فاز گاز و تولید هالوژن یا آمیزه اکسی هالید) پرکننده ها شاخص گسترش شعله را43 را کاهش می دهند و به استثنای آلومینیوم سه آبه (ATH) باعث افزایش پارامتر محدودیت اکسیژن می شوند. شکل ‏24 تأثیر پرکننده های تأخیر دهنده اشتعال را بر روی پارامتر انتشار شعله، پارامتر محدودیت اکسیژن و دانسیته نوری ویژه وینیل استر برومینه شده44 شده را نشان می‌دهد.

شکل ‏24: تأثیر تأخیردهنده اشتعال بر روی (الف) شاخص گسترش اشتعال (ب)شاخص محدودیت اکسیژن (ج) دانسیته نوری ویژه یک است وینیل استری برومینه شده.توسط Mochat & Hiltz( [14]
بیشترین دغدغه استفاده از پلیمرهای هالوژنه و کامپوزیت های پلیمری رهایش دودهای خورنده اسیدی و گازهای سمی است که به طور جدی بر روی سلامت و خطرات زیست محیطی تأثیرگذار است.[5, 6, 14] پلیمرهای کلرینه مقدار زیادی گاز HCL رهایش می کنند که می توانند بر روی سیستم تنفسی و چشم تأثیر گذاشته و توانایی گریز از آتش را از انسان بگیرد. همچنین پلیمرهای کلرینه می توانند ؟؟؟ و عناصر وابسته دی اکسین که به شدت سمی هستند را تولید کند. تماس با دی اکسین ها با غلظت زیاد می تواند منجر به مشکلات زیادی از لحاظ سلامتی شود، مشکلاتی از قبیل سرطان، تغییر رنگ پوست، خارش پوست و تاول ایجاد کند. همچنین دی اکسین ها با ورود به اکوسیستم می توانند برای سال ها درون بدن جانداران و گیاهان باقی بمانند. به همین دلایل استفاده از این پلیمرها در بسیاری از کشورها منسوخ شده است و به جای آن از پلیمرهای تأخیر دهنده اشتعال دوستدار محیط زیست شامل brominaded index، tris(tribromophenyl)cyanurate,tris(tribromoneophentyl)cyanurate استفاده می کنند.

کامپوزیت های پلیمری فسفره تأخیر دهنده اشتعال45
مقاومت اشتعال پذیری پلیمرها و کامپوزیت های پلیمری می تواند به وسیله افزودن فسفر افزایش یابد.[3, 6, 13, 15, 16]
یکی از روش‌های بسیار معمول و رایج برای

پایان نامه
Previous Entries منبع مقاله درمورد امام صادق، عرفان و تصوف، جهان خارج Next Entries منبع مقاله درمورد عالم ماده