منابع پایان نامه درمورد ورشکستگی، پیش بینی ورشکستگی، هوش مصنوعی

دانلود پایان نامه ارشد

هر دوی نمونه های آموزشی و آزمایشی بر دیگر مدل ها فائق آمده است.
به هر حال با توجه به جدید بودن مدل هایSVM و کاربرد اندک آن ها در مسائل مالی و به خصوص پیش بینی ورشکستگی امکان ارائه اظهار نظر قطعی در مورد آن ها وجود ندارد. همچنین تکنیک های دیگری نیز برای پیش بینی ورشکستگی به کار رفته است که به دلیل کاربرد اندک آن در ادبیات تحقیق تنها به ذکر نام آن ها اکتفا می شود، این تکنیک ها عبارتند از: منطق فازی و تحلیل پوششی داده ها.
2-7-15)معیارهای تجزیه ترازنامه (BSDM)/ تئوری بی نظمی: یک راه تعیین پریشانی مالی آزمون تغییرات در ساختار ترازنامه است. بر اساس این تئوری شرکت ها سعی در حفظ تعادل در ساختار مالی خود بوده و چنانچه صورت های مالی یک شرکت تغییرات با اهمیتی در ترکیب دارایی های بدهی ها منعکس کند، احتمال اینکه شرکت قادر به حفظ وضعیت تعادل خود نباشد، افزایش می یابد. اگر این تغییرات در آینده قابل کنترل نباشد، می توان پریشانی مالی در این شرکت را پیش بینی کرد(بوث71،1983) .

2-8) تئوری های ورشکستگی
2-8-1) تئوری ورشکستگی قمارباز: در این روش، شرکت می تواند مانند قماربازی در نظر گرفته شود که مکررا با مقداری احتمال زیان بازی می کند و به عملیات خود تا زمانی که خالص ارزش آن به زیر صفر برسد (ورشکستگی شود ) ادامه می دهد. با فرض مقادیری وجه نقد، در هر دوره مشخصی، این خالص احتمال مثبت وجود دارد که جریان وجه نقد یک شرکت طی دوره منفی شده و نهایتا منجر به ورشکستگی شود (موریس72، 1998).
2-8-2) تئوری مدیریت وجوه نقد: مدیریت کوتاه مدت ترازهای وجه نقد بنگاه، یکی از نگرانی های اصلی هر شرکتی است. عدم تعادل بین جریان های ورودی و خروجی می تواند به معنی ناتوانی عملکرد مدیریت وجوه نقد شرکت باشد و این عاملی است که می تواند منجر به پریشانی مالی و نهایتا ورشکستگی شود (عزیز و دیگران، 1988 ) .
2-8-3) تئوری های ریسک اعتباری73: ریسک اعتباری خطری است که هر قرض گیرنده به هر دلیلی ناتوان از ادای تعهدات خود شود. این مدل ها و پیش بینی ریسک مربوط به آنها مبتنی بر تئوری های اقتصادی مدیریت مالی بوده و مجموعا به تئوری های ریسک اعتباری اشاره دارند. این مدل ها شامل اعتبارسنجی مورگان وKMV، ریسک اعتباری CSFB و تئوری پرتفولیوی اعتباری مک کینسی می شود.
2-8-3-1) مدل های اعتبار سنجی مورگان74 وKMV مودی75: مدل های اعتبار سنجی مورگان وKMV مودی بر تئوری قیمت گذاری اختیار معامله تکیه دارند.
بر اساس این تئوری که، ناتوانی پرداخت بدهی ذاتا مربوط به ساختار سرمایه است و شرکت در صورتی ممکن است از ایفای تعهدات خود ناتوان شود که ارزش دارایی های آن به پایین تر از سطح حیاتی (توسط مدل های ریسک اعتباری، تعیین می شود ) برسد (بلاک و اسچولر76، 1973 ).
2-8-3-2) ریسک اعتباریCSFB + : شاخه ای از علم آمار را به منظور برآورد توزیع زیان پرتفوی اوراق قرضه / وام دنبال می کند. بر اساس این تئوری ناتوانی پرداخت بدهی از یک توزیع پواسون مستقل پیروی می کند. این مدل ویژگی های ضروری رویدادهای نکول اعتباری را به دست آورده و اجازه محاسبه کامل توزیع زیان پرتفولیوی را می دهد (سویس77، 1997 ).
2-8-3-3) تئوری پرتفولیوی اعتباری مک کینسی: تئوری پرتفوی اعتباری مک کینسی از روش های اقتصاد کلان برای ارزیابی ریسک ناتوانی تجاری استفاده می کند. طبق این تئوری چرخه های اعتباری به شدت از چرخه های تجاری پیروی می کنند که در آن احتمال ورشکستگی تابعی از متغیر های نظیر نرخ بیکاری، نرخ های بهره، نرخ رشد اقتصادی، مخارج دولت، نرخ مبادلات خارجی، و پس انداز کل است. بر این اساس کشورهای دارای وضعیت بد اقتصادی شاهد افزایش در میزان نرخ بهره اوراق بهادار و همچنین ناتوانی تجاری می باشند(ویلسون78، 1998)، نیوتن (1998) نیز شرایط اقتصادی رایکی از عوامل تاثیر گذار بیرونی بر پدیده ورشکستگی می داند. پس از مروری جامع بر تکنیک های مورد استفاده در ساخت مدل های پیش بینی ورشکستگی، اکنون به بررسی میزان کاربرد و میزان دقت مدل های ساخته شده با استفاده از این روش ها می پردازیم.
این بخش بر اساس تحقیقات دیمیتراس و دیگران (1996) راوی کومار وراوی (2007) و عزیز و همایون ارائه شده است.
2- 9 )میزان کاربرد تکنیک ها در مدل بندی پیش بینی ورشکستگی
با تعیین اهمیت تکنیک های آماری در پیش بینی ورشکستگی طبیعی است که مدل های آماری به صورت گسترده ای مورد استفاده قرار گیرند. اما تمامی مدل های MDA، لوجیت و پروبیت به شکلی از مفروضات محدود کننده رنج می برند و عملکرد پیش بینی آنها در واقعیت کمی متفاوت است. نقض مفروضات LPMدر عمل و فقدان مجموعه داده های مورد نیازCUSUMو مدل های تعدیل ناقص باعث شده است تا این مدل ها در عمل دارای ارزش بسیار زیادی نباشند.
نمودار (2-1) میزان کاربرد روش های مختلف پیش بینی ورشکستگی را نشان می دهد. بر این اساس در 64% پروژه های پیش بینی ورشکستگی از مدل های آماری استفاده شده است. پس از آن مدل های هوش مصنوعی و مدل های تئوریک به ترتیب در 25 و 11 درصد مطالعات استفاده شده اند (فرج زاده،1386).
.
مقایسه کاربرد انفرادی هر تکنیک نیز نتایج جالبی در بر دارد. نمودار (2-2) میزان کاربرد هر مدل را به صورت انفرادی نشان می دهد.

نمودار بالا نشان می دهد که بیش از 30 % تحقیقات از مدل هایMDA برای پیش بینی ورشکستگی استفاده کرده اند در حالیکه 21% دیگر از مطالعات مدل های لوجیت را بر سایر مدل ها ترجیح داده اند. و این به این معنی است که این دو مدل تشکیل دهنده 77% مطالعاتی هستند که از روش های آماری برای پیش بینی ورشکستگی استفاده کرده اند. در گروه مدل های هوش مصنوعی شبکه هی عصبی با 9% و به دنبال آن طبقه بندی بازگشتی دارای رتبه های اول و دوم هستند. تئوری آنتروپی در میان مدل های تئوریک رایج ترین مدل است اما با این وجود تنها تشکیل دهنده 5/4 % کل مطالعات انجام شده در زمینه پیش بینی ورشکستگی است.
به هر حال با بررسی روند مطالعات مشخص می شود که امروزه استفاده از مدل های آماری در این زمینه کاهش یافته است و مطالعات اخیر بیشتر تمایل به استفاده از مدل های مبتنی بر هوش مصنوعی دارند. کاهش استفاده از مدل های آماری نظیر لوجیت و پروبیت مشهود تر است. یکی از مهمترین دلایل آن تخطی این مدل ها از مفروضات آماری است. به هر حال اتکای بر مفروضات محدود کننده در مورد روش های آماری موجب اقبال مدل های هوش مصنوعی از سوی پژوهشگران شده است زیرا این مدل ها اغلب ناپارامتریک بوده ودر به کار گیری آنها نیاز چندانی به مفروضات اولیه و یا اطلاعات مربوط به چگونگی توزیع ویژگی های مالی در میان گروه های شرکت های ورشکسته و غیر ورشکسته نیست.

2- 10) میزان دقت و خطای نوع اول و دوم مدل های پیش بینی ورشکستگی
دقت پیش بینی مدل ها نیز می تواند ما را در ارزیابی آنها یاری کند. در نخستین مرحله قدرت پیش بینی گروه های مدل ورشکستگی را مقایسه می کنیم. نتایج این مقایسه در نمودار (2-3) ارائه شده است (فرج زاده،1386).
نمودار فوق قدرت پیش بینی گروه های مدل را در دوره یکسال قبل از ورشکستگی نشان می دهد. به صورت کلی مدل های مبتنی بر هوش مصنوعی از قدرت بالاتری در زمینه پیش بینی ورشکستگی بر خوردارند که این خود می تواند دلیلی بر توجه محققان بر استفاده از این مدل ها باشد.
نمودار (2-4) عملکرد انفرادی مدل ها را ارائه می کند. به نظر می رسد به صوت انفرادی مدل ورشکستگی قمارباز با دقت پیش بینی 94% دارای بهترین عملکرد باشد اما این مدل تنها در یک پژوهش به کار رفته است از این رو برای اینکه بتوان به صورت قابل اتکای عملکرد کلی آن را مشخص کرد بایستی منتظر تحقیقات آتی در این زمینه بود.

چنانچه دقت مدل ها بر اساس تعداد تحقیقات به کار رفته تعدیل شود آنگاه عملکرد مدل هایMDA و لوجیت (با کمترین انحراف معیار تعدیل شده ) نسبت به عملکرد سایر مدل ها در وضعیت بهتری قرار می گیرند. در این رده بندیBSDM که یک مدل تئوریک است در رتبه سوم و پس از آنNN,CUSUM در رده های بعدی قرار دارند. نکته ای که باید در اینجا متذکر شد این است که افق پیش بینی یک سال قبل از ورشکستگی طولانی نیست و به نظر می رسد دقت مدل ها با افزایش دوره زمانی به شدت کاهش می یابد.
در حالیکه مدل هایMDA و لوجیت رایجترین مدل ها در پیش بینی ورشکستگی هستند اما این کاربرد گسترده تنها بخاطر دقت نسبی پیش بینی آنها نیست. همانگونه که پیش از این مشاهده کردیم مدل های هوش مصنوعی با دقت پیش بینی 88% دارای بهترین عملکرد کلی هستند پس از آن مدل های تئوریک و روش های آماری در رتبه های بعدی قرار می گیرند. این نتایج نشان می دهد که احتمالا تحقیقات آتی بر روی استفاده از مدل های هوش مصنوعی تمرکز خواهند کرد. در ارزیابی قدرت پیش بینی نکته دیگری که دارای اهمیت فوق العاده ای است میزان خطای نوع اول (تعداد شرکت های ورشکسته ای که به عنوان شرکت های غیر ورشکسته طبقه بندی شده اند.) و خطای نوع دوم (تعداد شرکت های غیر ورشکسته ای که به عنوان شرکت های ورشکسته طبقه بندی شده اند.)هر مدل است. در نمودارهای (2-5) و (2-6)میانگین خطای نوع 1 و نوع 2 هر مدل ارائه شده است(فرج زاده،1386).

هر چند پایین ترین خطا نوع اول در مورد LPMمشاهده شده است اما این مدل در جدول بالا دارای رتبه 11 است که باعث کاهش مطلوبیت این مدل می شود. در مورد الگوریتم ژنتیک این امر رضایت بخش تر است زیرا علاوه بر قدرت پیش بینی بالای خود دارای خطای نوع اول و دوم پایینی است. نکته قابل توجه در مورد مدل هایMDA لوجیت این است که هر چند دارای قدرت پیش بینی بالای هستند اما خطای نوع اول و دوم این مدل ها در مقایسه با مدل هایی نظیر الگوریتم ژنتیک بالا است. اما مدل مبتنی بر تئوری وجوه نقد علاوه بر اینکه دارای دقت پیش بینی ضعیفی است در مورد خطا های نوع اول و دوم نیز وضعیت مشابهی دارد که از مطلوبیت این مدل به شدت می کاهد.

در دنیای واقعی خطای نوع دوم نسبت به خطای نوع اول از اهمیت کمتری برخوردار است. زیرا از پیامد ها و هزینه های اقتصادی کمتری در پی دارد. در تصویر زیر میانگین خطای نوع دوم مدل ها ارائه شده است . .
همچنان که موضوع پیش بینی ورشکستگی تحقیقات بسیاری را به خود معطوف کرده است، به همان میزان نتایج مطلوبی حاصل نشده است (پلت و پلت79، 1990). مدل های ایجاد شده ازپس آزمون پایداری80 بر نیامده اند. این مطلب می تواند ناشی از چندین عامل باشد. یک دلیل می تواند این باشد

پایان نامه
Previous Entries منابع پایان نامه درمورد ورشکستگی، پیش بینی ورشکستگی، نسبت های مالی Next Entries منابع پایان نامه درمورد ورشکستگی، بحران مالی، پیش بینی ورشکستگی