منابع پایان نامه درمورد ورشکستگی، پیش بینی ورشکستگی، نسبت های مالی

دانلود پایان نامه ارشد

تابع جدید است جایگزین می گردد. چنانچه عملگر جهش بر روی درخت انجام گیرد، یک گره عملیاتی جدید که لزوما دارای آرایه های یکسان با گره عملیاتی فعلی نیست انتخاب شده و گره اصلی همراه با زیر درخت های مربوط به آن با یک زیر درخت که به صورت تصادفی ایجاد شده است جایگزین می گردد. تصویر(2-6) مثالی از عملگر جهش را نمایش می دهد.

تصویر(2-6) نمایشی از عملگر جهش

گام های اصلی برنامه ریزی ژنتیک را می توان به صورت زیر خلاصه کرد:
1-به صورت تصادفی یک جمعیت اولیه از قواعد نشان دهنده راه حل های بالقوه برای پیش بینی گروه های شرکت های ورشکسته و غیر ورشکسته ایجاد می شود.
2-هر قاعده ایجاد شده برای مجموعه آموزشی با استفاده از تابع برازش ارزش گذاری می شود.
3-برخی قواعد بر اساس ارزش گذاری انجام شده در مرحله قبل برای انجام مکانیسم تولیدمثل انتخاب می شوند.
4- عملگرهای تقاطع، تولیدمثل و جهش برای ایجاد قواعد جدید بر روی قواعد فعلی اعمال می شود.
5- این فرزندان جدید برای ایجاد جمعیت جدید انتخاب می شوند.
6-گام های (3) تا (6) تا زمانی که یک قاعده طبقه بندی (پیش بینی ورشکستگی) مناسب یافت شود یا حداکثر تعداد تولیدمثل که از پیش تعیین شده است حصول گردد، تکرار می شود.
7-گام های(2) تا (7) تا زمانی که یک قاعده برای هر یک از گروه ها در مجموعه داده ها مشخص شود، تکرار می شود.
8-هر شرکت در مجموعه آموزشی و آزمایشی تنها و تنها به یک گروه (ورشکسته یا غیر ورشکسته) انتصاب می یابد. تابع برازش: هر جمعیت از قواعد توصیف کننده گروه هر شرکت تشکیل شده است یعنی مجموعه ای از مجموعه شرایطی بر ویژگی های اهداف طبقه بندی. برای تمامی مسائل طبقه بندی به منظور اعمال تابع برازش خاص، الگوریتم های یادگیرنده بایستی ارزس ایجاد شده توسط مدل را به “0” یا”1″ با استفاده از ارزش آستانه ای، تبدیل کند. اگر ارزش ایجاد شده توسط مدل مساوی یا بزرگ تر از ارزش آستانه ای باشد، آنگاه شرکت در گروه “1” ( ورشکسته) طبقه بندی می شود و بالعکس توابع برازش مختلفی وجود دارد که می توان از آن ها برای ارزش گذاری عملکرد قواعد ایجاد شده استفاده کرد. به طور مثال: تعداد موفقیت، حساسیت اقتصادی بودن، مربع خطاهای نسبی، میانگین مربع خطاها و غیره.
عموما برازش () یک برنامه منحصر به فرد در ارتباط با تعداد موفقیت بوده و توسط معادله زیر ارزیابی می شود:
معادله (2-8)
که در آن h تعداد مواردی است که به صورت صحیح برازش ( تعداد موفقیت ) شده اند. بنابراین برای این تابع برازش، حداکثر برازش f_max توسط معادله زیر مشخص می شود. که در آن n تعداد موارد برازش شده است.
معادله (2-9)

می توان از یک تابع rf_i فشار برای ایجاد محدودیت در اندازه برنامه استفاده کرد. به این صورت که این تابع فشار جریمه ای متناسب با اندازه برنامه در عملکرد آن لحاظ می کند و به گونه ای تعادلی میان سادگی مدل و دقت آن (دو پارامتر اصلی در ارزیابی هر برنامه ایجاد شده توسط GP) ایجاد می گردد. بنابراین در این مورد، rf_i=n حداکثر برازش خام بوده و برازش کلی 〖fpp〗_i (که تابع براز همراه با تابع فشار است) توسط معادله زیر ارزیابی می گردد:

معادله(2-10)

که در آن s_i اندازه برنامه s_max و s_min به ترتیب ارائه کننده حداکثر و حداقل اندازه های برنامه بوده و توسط معادله های زیر ارزیابی می شوند:

معادله (2-11)

که در آنG ژن ها و h و t ابتدا و انتهای اندازه ها هستند. بنابراین، هنگامی که rf_i=rf_max و S_i=S_min (بالاترین عملکرد، تنها برای توابع بسیار ساده می تواند رخ دهد و بهاین معنی است که تمامی زیر درخت هاتنها از یک گره تشکیل شده اند.) 〖fpp〗_i=〖fpp〗_max که 〖fpp〗_max توسط معادله ی زیر ارزیابی می شود:

معادله (2-12)

معیار توقف معمول برای تکمیل تعداد تولیدمثل،تحقیق خطای مطلوب طبقه بندی است. فرایند توصیف شده در تصویر (2-7) ارائه شده است (تساکوناس، 2006).

تصویر(2-7)شمای کلی از فرایند برنامه ریزی ژنتیک

برنامه ریزی ژنتیک برای حل مسئله پیش بینی ورشکستگی
مدل ژنتیک دارای توانایی استخراج خودکارقواعدهوشمندانه طبقه بندی برای پیش بینی گروه شرکت های درمانده مالی و سالم در یک نمونه با استفاده از ارزش های نسبت های مالی معین است. این نسبت های مالی اصطلاحا متغیرهای پیش بینی کننده نامیده می شوند. هر قاعده متشکل از ترکیب منطقی از این نسبت های مالی است. این ترکیب توصیفی از گروه را فراهم می آورد که برای ساخت قاعده طبقه بندی به کار می رود.
هنگامی که تابع براز تعریف شود، مسئله پیش بینی ورشکستگی تبدیل به مسئله جستجوی بهترین راه حل در فضای جستجو (متشکل از تمامی راه حل های ممکن) می شود، یعنی بهینه سازی تابع برازش، که می توان از تکنیک های بهینه سازی استفاده کرد. با در نظر گرفتن متغیر های توصیف کننده هر شرکت و دامنه هر یک از آن ها، به سادگی قابل درک است که برای مسئله پیش بینی ورشکستگی، تعداد راه حل های ممکن بیشمار ا ست. یک جستجوی گسترده تمامی راه حل های ممکن از لحاظ محاسباتی غیر ممکن است. از این رو ما از GP استفاده می کنیم که روش جستجوی قدرتمندی الهام شده از انتخاب های طبیعی است. GP یافتن بهینه تری راه حل را تضمین نمی کند با این وجود GP به ما این اجازه را می دهد تا به راه حلی به النسبه بهینه در یک زمان محاسباتی معقول دست یابیم.
جمعیت تکامل یافته متشکل از افراد یا برنامه های نشانگر قواعد طبقه بندی به شکل درخت هایی هستند که اندازه های آن ها فی النفسه از لحاظ طول متغیرند. هر قاعده متشکل از تعدادی از عبارات شرطی است که این شروط میان متغیرهای معین و یک نتیجه پیش بینی کننده، معرف گروه شرکت ها، تعیین می شوند. یک گروه همراه با توصیفش یک قاعده طبقه بندی از نوع اگر ( راه حل ) آنگاه ( ورشکسته/ غیر ورشکسته) را تشکیل می دهد. قسمت شرطی قاعده توسط تمامی عبارات شرطی تشکیل می گردد. یک جمعیت متشکل از مجموعه ای از این قواعد احتمالی نگهداری شده و به طور پیوسته ساخت قواعد مناسب تر تا زمانی که شرط کفایت یا دیگر معیارهای توقف حاصل شود، بهبود می یابد.
برای ساخت مدل پیش بینی ورشکستگی، داده ها به دو مجموعه تقسیم می شوند: مجموعه آموزشی و مجموعه آزمایشی. مجموعه آموزشی در بر دارنده شرکت هایی با گروه های معین ( ورشکسته/ غیر ورشکسته) است که برای فرایند تکامل برای یافتن قواعد طبقه بندی صریح قادر به جداسازی فضای گروه شرکت های ورشکسته از فضای شرکت های غیر ورشکسته بکار می روند، در حالی که مجموعه آزمایشی برای ارزیابی قابلیت تعمیم قواعد یافت شده به کار می روند (دیفالکو60،2002).
2-7-13) مدل مجموعه های سخت61: تئوری مجموعه های سخت توسط پاولاک62 (1982) در مواجهه با مسئله تمایز بین مشاهدات در یک مجموعه معرفی شد. هدف تئوری مجموعه های سخت طبقه بندی مشاهدات با استفاده از اطلاعات مبهم است. بنابراین، این تئوری هنگامی مفید است که گروه هایی که مشاهدات در آن طبقه بندی می شود نادقیق باشند. اگرچه تئوری مجموعه های سخت از جهاتی مربوط به ابزار ریاضی در ارتباط با ابهام و عدم اطمینان است، اما روش متفاوتی محسوب می شود. یکی از مهمترین مزایای آن این است که نیازی به هیچ کدام از اطلاعات اولیه یا اضافی در مورد داده ها نظیر: توزیع های احتمال در آمار یا درجه عضویت در تئوری مجموعه های فازی را ندارد.
این تئوری کاربرد وسیعی در زمینه مسائل مالی داشته است اما در مورد مسئله ورشکستگی دارای سابقه طولانی نیست. در مدل مجموعه های سخت اطلاعات مربوط به مشاهدات در جدول اطلاعاتی ارائه می شود که شبیه جدول تصمیم محتوای مجموعه شرایط و ویژگی های تصمیم کار می کند سطرهای این جدول توسط مشاهدات و ستون های آن به وسیله ی ویژگی ها نام گذاری می شود و درون آن ارزشهای ویژگی ها برای مشاهدات قرار دارد. برای استخراج قوانین تصمیم از اصول یادگیری استقرایی استفاده می شود. هر مشاهده جدید می تواند با تطبیق ویژگی های ان با مجموعه قواعد استخراج شده طبقه بندی شود. اسلاوینسکی استفانوسکی63 (1994) توصیف کاملی از کاربرد تئوری مجموعه های سخت فراهم آورده اند. اسلاوینسکی و زاپونیدیس64 (1995) نخستین کسانی هستند که تئوری مجموعه های سخت را در مورد پیش بینی ورشکستگی به کاربرد بردند و در مورد نمونه آموزشی توانستن مشاهدات را 100 درصد صحیح طبقه بندی کنند اما مدل بدست آمده را برای آزمون روایی بر روی نمونه آزمایشی به کار نبرد. پس از آن تئوری مجموعه های سخت درچندین مطالعه دیگر مانند گرکو و دیگران 65(1998)، مک کی66 (2000) و بایچ و پپو67 (2001) برای پیش بینی ورشکستگی به کار رفت.
2-7-14) ماشین بردار تکیه گاه (SVM)68: ماشین بردار تکیه گاه که توسط واپنیک و هایکین 69(1998 ) معرفی شده است، از یک مدل خطی گروه ها استفاده می کند. این مدل خطی با نگاشت بردار ورودی غیر خطی به فضای خصیصه چند بعدی به دست می آید. مدل خطی ساخته شده در فضای جدید می تواند یک مرز تصمیم غیر خطی در فضای اولیه ارائه کند. در فضای جدید، یک صفحه جداکننده بهینه تشکیل می گردد. بنابراین SVM به عنوان الگوریتمی که نوع خاصی از مدل خطی، صفحه حداکثر تفاوت، را می یابد شناخته می شود. صفحه حداکثر تفاوت، بیشترین جداسازی بین گروه های تصمیم را ارائه می کند.
مین و لی70 (2005 ) SVM را برای پیش بینی ورشکستگی پیشنهاد کردند. آن ها جستجوی شبکه ای که از سنجش اعتبار پنج مرتبه ای استفاده می کند را برای یافتن مقادیر بهینه پارامتری تابع اصلی SVM به کار بردند. در این تحقیق مدل SVM با مدل هایMDA، لوجیت و شبکه های عصبی پس از انتشار مقایسه شد. نتایج نشان داد که مدل SVMدر

پایان نامه
Previous Entries منابع پایان نامه درمورد الگوریتم ژنتیک، ورشکستگی، پیش بینی ورشکستگی Next Entries منابع پایان نامه درمورد ورشکستگی، پیش بینی ورشکستگی، هوش مصنوعی