منابع پایان نامه درمورد ورشکستگی، بحران مالی، پیش بینی ورشکستگی

دانلود پایان نامه ارشد

که مدل های آماری تمایل به استفاده از جفت های تطبیق یافته81 شرکت های ورشکسته و غیر ورشکسته دارند.
پس از آن داده های متغیر ها در تعین نقاط انقطاع82 ( آستانه ها83 ) برای تمایز بین شرکت های ورشکسته و غیر ورشکسته استفاده شده است. داده های استفاده شده برای استخراج آستانه ها خاص سال بوده و تلاش در افتراق صحیح شرکت ها در نمونه آزمایشی ( که از دوره زمانی مشابهی هستند )دارد. این برش ها هنگامی که در دوره های زمانی متفاوتی ( شامل استفاده در مطالعات بعدی ) بکار می روند کارایی کمتری دارند.
دلیل دیگر برای کاهش دقت مطالعات پیش بینی ورشکستگی می تواند متغیر های انتخاب شده برای ساخت مدل باشد. اغلب مطالعات متغیر های استفاده شده در مدل را بر بنای رواج و مطلوبیت آنها در ادبیات تحقیق انتخاب شده اند. اغلب ریشه در ارتباط یا این تفکر که نشانه نقدینگی است و نقدینگی مترادف با توانایی مالی است، دارد بنابراین این متغیر ها با حداقل دخل و تصرف و تعدیل در مطالعات دیگر استفاده شده اند.
2-11) نسبت های مالی مورد استفاده در پیش بینی ورشکستگی
آلتمن (1968) با مجموعه بسیار بزرگی از نسبت های صورت مالی کار خود را شروع کرد، سپس آنها ر ا با استفاده ازMDA بر مبنای مشارکت متغیرها در جدا سازی شرکت های ورشکسته و غیر ورشکسته، غربال کرد. آلتمن متغیرها را بدون بهره گیری از توسعه تئوریکی که یک شرکت ورشکسته بایستی مشابه چه باشد انتخاب شده اند. ضرورتا نیاز است در مورد اینکه ورشکستگی چیست و معنی آن چیست بحث شود و پس از آن مجموعه ای از متغیرهای صورت های ما لی که در این رابطه جلوه گر می شوند، توسعه یابند. بدون نگاه دقیق به ورشکستگی، مایه تعجب نخواهد بود که مدل های پیش بینی ورشکستگی از پس آزمون زمان برنیایند. به منظور انتخاب متغیرها به شکل استدلالی برای مدل پیش بینی ورشکستگی، در نخستین گام نیاز به توصیف ویژگی های شرکت ورشکسته است. بایستی برخی از شاخص هایی که دادگاه ورشکستگی در تعیین ورشکستگی از آنها استفاده می کند وجود داشته باشد. پس ار آن متغیر های صورت های مالی را می توان انتخاب کرد که بیانگر آن شرایطی هستندکه نشان می دهد یک شرکت ورشکسته است. حقیقت دیگری در مورد مدل های پیش بینی وجود دارد این است که مدل چه فاصله زمانی را قادر به پیش بینی ورشکستگی است ؟ تحقیقات قبلی در قالب زمانی سال قبل از بایگانی بهتر عمل کرده اند، اما خارج از این دامنه نزدیک بدتر عمل کرده اند. به نظر واضح است که یک مدل ایستا در پیش بینی هر دوی ورشکستگی در کوتاه مدت و بلند مدت غیر کارا است. متغیر های متفاوتی در مدل پیش بینی ورشکستگی در بلند مدت بایستی وجود داشته باشد. افق زمانی طولانی مدت تر بایستی منجر به کاهش دقت پیش بینی مدل شود.

2-12) نتیجه گیری
با توجه به مطالب فوق و میزان دقت و خطاهای مدل های ذکر شده مشخص می شود که مدل های مرتبط به الگوریتم ژنتیک نسبت به سایر مدل ها از میزان دقت پیش بینی بالاتری برخوردارند لذا با توجه به اینکه پژوهشی در زمینه الگوریتم ژنتیک در ایران توسط فرج زاده صورت گرفته است و با توجه به شرایط اقتصادی ایران از میزان دقت بالایی نسبت به سایر مدل ها دارد در این پژوهش از آن بعنوان مدل مقایسه ای استفاده می شود.

بخش دوم: پیشینه تحقیق
2-13) مطالعات صورت گرفته با موضوع تحقیق
2-13-1) تحقیقات خارجی در زمینه درماندگی مالی
بیور(1966)نخستین فردی بود که در ساختن مدل پیش بینی ورشکستگی با استفاده از نسبت های مالی اقدام کرد.او اولین پژوهشگری بود که ی مدل تحلیل تمایزی تک متغیره را برروی تعدادی از نسبت های مالی یک نمونه زوج دوتایی از شرکت های ورشکسته و غیر ورشکسته به منظور پیش بینی بحران مالی شرکت ها مورد استفاده قرار داد.که در نهایت به این نتیجه رسید که نسبت جریان نقدی به کل بدهیها بیشترین دقت را در پیش بینی درماندگی مالی شرکتها تاپنج سال قبل از وقوع آن دارد.آلتمن (1968)تحلیل آماری چند مرحله ای را وارد حوزه پیش بینی بحران مالی شرکت ها نمود و مدل برآوردی خود را Z-Score نامید که دارای دقت کلی برابر 95 و83 درصد به ترتیب در یک و دو سال قبل از وقوع ورشکستگی بود و همچنین به این نتیجه رسید که تفاوت بین نسبتهای مالی شرکت های ورشکسته و سالم با نزدیک شدن به زمان ورشکستگی افزایش می یابد)موسوی شیری، 1388).
دیکین84 (1972)در پژوهشی به ارائه الگویی با 14 متغیر پرداخت که این الگو در پنج سال قبل از وقوع درماندگی مالی به ترتیب دقتی برابر با 83،79،95.5،95.5،97 داشت.
بلوم85 (1974)از یک مدل تمایزی چند متغیره و صورت های مالی بعنوان متغیر های پیش بینی استفاده کرد.او در پژوهش خود از طریق گسترش مفهوم درماندگی تعداد نمونه های خود را افزایش داد.همچنین وی در پژوهش خود از داده های خام حسابداری مانند سود تقسیمی در کنار نسبت های مالی استفاده کرد.و در نهایت الگویی با 12 متغیر با دقتی برابر 70،70،70،80،94 درصد به ترتیب تا پنج سال قبل از وقوع درماندگی مالی ارائه نمود.دیکین (1977) از ترکیبات غیر خطی نسبتهای مالی برای پیش بینی درماندگی مالی استفاده کرد.وی در نهایت یک الگوی خطی 5متغیره با دقت 94.4 درصد در یکسال قبل از وقوع و یک الگوی غیر خطی با دقتی برابر 83.9 درصد در یکسال قبل از وقوع درماندگی ارائه کرد.
اسپرین گیت86(1978) یک الگوی 4 متغیره با دقتی برابر با 92.5 درصد در یکسال قبل از درماندگی ارائه نمود.
اوهلسون (1980)از نسبتهای مالی و تجزیه و تحلیل لوجیت چندی بعدی برای ایجاد مدل خود استفاده کرد. مدل وی متشکل از نه متغیر روی یک نمونه شامل 105 شرکت مواجه با بحران مالی و2058شرکت فاقد بحران مالی امتحان گردید که نرخ دقتی حدود 85درصد برای یکسال قبل از ورشکستگی حاصل شد (غلامپور فرد، 1387).
زمیجوسکی(1984)با استفاده از تجزیه و تحلیل پروبیت با انتخاب نمونه ای مشتمل بر 40شرکت با بحران مالی و 80 شرکت فاقد بحران مالی به نرخ دقتی حدود 78 درصد برای یکسال قبل از ورشکستگی رسید. وی در الگوی خود از نسبتهای مالی که نقدینگی، عملکرد و اهرمهای شرکت را اندازه گیری می کنند استفاده کرد.
زاوگرن (1985 ) از تکنیک لوجیت برای طبقه بندی شرکت های ورشکسته استفاده کرده است. دقت کلی مدل وی در پیش بینی طبقه بندی شرکت ها به ترتیب 82 درصد، 83 درصد، 72 درصد، 73 درصد، 80 درصد برای سالهای 1 تا 5 سال قبل از بروز بحران مالی بود
گرایس (1998 ) مجموعه ای از مدل های پیش بینی ورشگستگی برای ارزیابی حساسیت ساختار آن ها نسبت به ترکیبات متعدد نسبت های مالی مورد مطالعه قرار داد و بر اساس مدل احتمالی شرطی لوجیت مدلی را ارئه نمود که در این گونه مدل های لوجیت نسبت های مالی شرکت ها در ضرایب مدل ضرب شده تا یک شاخص لوجیت ایجاد شود. میزان دقت پیش بینی مدل وی حدود 79 درصد برای یک سال قبل از ورشکستگی و 78 درصد برای دو سال قبل از ورشکستگی بدست آمد.
سانگ و همکاران87(1999) پژوهشی در زمینه الگوریتم افراز بازگشتی انجام داد که در نهایت این نتیجه بدست آمد که الگوی مبتنی بر الگوریتم افراز بازگشتی در شرایط عادی و بحران اقتصادی به ترتیب در83.3و81 درصد از موارد صحیح عمل می کند و الگوی تشخیصی در شرایط عادی و بحرانی به ترتیب دقتی برابر 82.1 و 79.8 درصد دارد.مکی و گرینستین88 (2000) در طی تحقیقی به این نتیجه رسید که الگوی الگوریتم افراز بازگشتی نسبت به دو الگوی لوجیت و شبکه عصبی با خطای نوع اول کمتری همراه است و این در حالی است که دو الگوی لوجیت و شبکه عصبی در مینیمم کردن خطای نوع دوم بهتر عمل می کنند.ادم و شردا89(1990)طی پژوهشی د ریافت که الگوهای مبتنی بر شبکه عصبی در مقایسه با الگوی مبتنی بر تحلیل تشخیصی چند متغیری از دقت و توان پیش بینی بالاتری برخوردارند.اسلچن گریگر و همکاران90(1992) در تحقیق خود به این نتیجه رسید که الگو های مبتنی بر شبکه عصبی عملکرد بهتری از الگو های مبتنی بر تحلیل لوجیت دارند.سی لن و همکاران91(2004) بر اساس تحقیق در زمینه درماندگی مالی دریافت که الگو های مبتنی بر تحلیل پوششی داده از الگو های مبتنی بر برنامه ریزی خطی ساده و الگو های مبتنی بر درخت تصیم گیری قابلیت پیش بینی بالاتری دارند.ونگ92)2007) طی پژوهشی در زمینه تحلیل پوششی داه ها به این نتیجه رسید که وارد کردن امتیاز کارایی به الگوهای تشخیصی، لو جیت و درخت تصمیم گیری باعث بهبود قابلیت پیش بینی این الگو ها می شود(موسوی شیری، 1388).

2-13-2)تحقیقات انجام گرفته در ایران در زمینه پیش بینی درماندگی مالی
در ایران نیز پیش بینی ورشکستگی در چند تحقیق دانشگاهی مورد بررسی قرار گرفته است.اولین کار پژوهشی در این ارتباط را مهدی فغانی نرم (1380)انجام داده اند. تعریف وی از ورشکستگی شمول ماده 141قانون تجارت در مورد شرکت بود.وی تحلیل تمایزی چند مرحله ای را مورد استفاده قرار داد.نمونه وی شامل 18شرکت ورشکسته و 23 شرکت سالم مربوط به دوره زمانی 1369تا1378بود و اطلاعات مالی شرکت را برای یک و دو سال قبل از ورشکستگی جمع آوری شده است.نسبتهای مالی مورد استفاده در این تحقیق عبارتند از:سرمایه در گردش به کل داراییها،سود قبل از بهره و مالیات به کل دارایی ها،سود انباشته به کل دارایی ها،نسبت ارزش بازار حقوق صاحبان سهام به ارزش دفتری کل بدهی،نسبت فروش به کل دارایی ها،نتیجه این تحقیق این بود که مدل طبقه بندی شرکتهای نمونه را بطور صحیح انجام داده و فاقد هر گونه خطای طبقه بندی بوده است(سهرابی عراقی،1387).علیرضا صفری (1381)ارتباط نسبتهای مالی و تداوم فعالیت شرکتها را مورد رسیدگی قرار داده است.تعریف وی از ورشکستگی توقف نماد معاملاتی شرکتهای پذیرفته شده در بورس اوراق بهادار بر اثر مشمولیت ماده 141 قانون تجارت بوده است.نمونه مورد آزمون وی 31 شرکت ورشکسته و 31 شرکت سالم برای دوره زمانی 1375-1380 بوده است.نسبهای مورد استفاده در این تحقیق عبارتند از: سرمایه در گردش به کل داراییها،قدرت سودآوری،سود قبل از مالیات به بدهی جاری و فروش به کل دارایی ها.
غلامرضا سلیمانی امیری(1381)درپژوهشی تحت عنوان “مدل پیش بینی متغیر های ورشکستگی در شرکتهای ایرانی “قدرت نسبتهای مالی جهت پیش بینی بحران مالی شرکتها را مورد بررسی قرار داده است.نمونه وی شامل 30 شرکت دارای بحران مالی و 30 شرکت فاقد بحران مالی بوده است.تعریف وی از ورشکستگی توقف نماد معاملاتی دربورس اوراق بهادار به دلیل ورشکستگی است که حداقل برای دو سال نماد آنها متوقف بوده است.از 22نسبت اولیه پس از بررسی های لازم 5نسبت که انتظار می رفت با هم بهترین پیش بینی را درخصوص بحران مالی ارائه نمایند انتخاب شده است. این نسبتها عبارتند از: سرمایه در گردش به کل داراییها،نسبت دارایی جاری به بدهی جاری،نسبت سود قبل از بهره و مالیات به کل داراییها،حقوق صاحبان سهام به کل دارایی ها،و نسبت فروش به کل دارایی ها تحقیق با استفاده از مدل رگرسیون چند گانه برای یک و دو و سه سال قبل از ورشکستگی انجام شده است. نتایج آماری مدل حاکی از معتبر بودن مدل و نسبتهایی انتخاب شده بوده است.نتایج آزمون توانایی پیش بینی مدل نشان دهنده این واقعیت است که مدل قادر

پایان نامه
Previous Entries منابع پایان نامه درمورد ورشکستگی، پیش بینی ورشکستگی، هوش مصنوعی Next Entries منابع پایان نامه درمورد ورشکستگی، پیش بینی ورشکستگی، تامین مالی