منابع پایان نامه ارشد درباره of، and، the، synthesis

دانلود پایان نامه ارشد

No 5,173,429 1992.
79- J.L. Cotter, M.S. Chinn, A.M. Grunden, Influence of process parameters on growth of Clostridium ljungdahlii and Clostridium autoethanogenum on synthesis gas, Enzyme Microb Technol 44 2009 281-288.
80- Y. Guo, J. Xu, Y. Zhang, H. Xu, Z. Yuan, D. Li, Medium optimization for ethanol production with Clostridium autoethanogenum with carbon monoxide as sole carbon source, Bioresour Technol 101 2010 8784-8789.
81- R. Worden, A. Grethlein, J. Zeikus, R. Datta, Butyrate production from carbon monoxide by Butyribacterium methylotrophicum, Appl Biochem Biotechnol 20 1989 687-698.
82- H. Younesi, G. Najafpour, A.R. Mohamed, Ethanol and acetate production from synthesis gas via fermentation processes using anaerobic bacterium, Clostridium ljungdahlii, Biochem Eng J 27 2005 110-119.
83- D.K. Kundiyana, R.L. Huhnke, P. Maddipati, H.K. Atiyeh, M.R. Wilkins, Feasibility of Incorporating Cotton Seed Extract in Clostridium strain P11 Fermentation Medium During Synthesis Gas Fermentation, Bioresour Technol 101 2010 9673-9680.
84- I.S. Chang, B.H. Kim, D.H. Kim, R.W. Lovitt, H.C. Sung, Formulation of defined media for carbon monoxide fermentation by Eubacterium limosum KIST612 and the growth characteristics of the bacterium, J Biosci Bioeng 88 1999 682-685.
85- I. Chang, D. Kim, B.H. Kim, P.K. Shin, H. Sung, R.W. Lovitt, CO fermentation of Eubacterium limosum KIST612, J Microbiol Biotechnol 8 1998 134-140.
86- J.R. Phillips, E.C. Clausen, J.L. Gaddy, Synthesis gas as substrate for the biological production of fuels and chemicals, Appl Biochem Biotechnol 45 1994 145-157.
87- D.K. Kundiyana, M.R. Wilkins, P. Maddipati, R.L. Huhnke, Effect of temperature, pH and buffer presence on ethanol production from synthesis gasby, Bioresour Technol 2011.
88- M. Kopke, C. Held, S. Hujer, H. Liesegang, A. Wiezer, A. Wollherr, A. Ehrenreich, W. Liebl, G. Gottschalk, P. Dürre, Clostridium ljungdahlii represents a microbial production platform based on syngas, Proceedings of the National Academy of Sciences 107 2010 13087-13092.
89- H.L. Drake, S.L. Daniel, Physiology of the thermophilic acetogen Moorella thermoacetica, Res Microbiol 155 2004 422-436.
90- P.C. Munasinghe, S.K. Khanal, Biomass-derived syngas fermentation into biofuels: Opportunities and challenges, Bioresour Technol 101 2010 5013-5022.
91- A.M. Henstra, J. Sipma, A. Rinzema, A.J.M. Stams, Microbiology of synthesis gas fermentation for biofuel production, Curr Opin Biotechnol 18 2007 200-206.
92- L. Ljungdhal, The autotrophic pathway of acetate synthesis in acetogenic bacteria, Annual Reviews in Microbiology 40 1986 415-450.
93- J.L. Cotter, M.S. Chinn, A.M. Grunden, Ethanol and acetate production by Clostridium ljungdahlii and Clostridium autoethanogenum using resting cells, Bioprocess Biosyst Eng 32 2009 369-380.
94- P.C. Maness, P.F. Weaver, Production of poly-3-hydroxyalkanoates from CO and H2 by a novel photosynthetic bacterium, Appl Biochem Biotechnol 45 1994 395-406.
95- Y.S. Do, J. Smeenk, K.M. Broer, C.J. Kisting, R. Brown, T.J. Heindel, T.A. Bobik, A.A. DiSpirito, Growth of Rhodospirillum rubrum on synthesis gas: Conversion of CO to H2 and poly–hydroxyalkanoate, Biotechnol Bioeng 97 2007 279-286.
96- O. Tirado-Acevedo. Production of Bioethanol from Synthesis Gas Using Clostridium ljungdahlii as a Microbial Catalyst. North Carolina State University; 2010.
97- G. Najafpour, H. Younesi, K. Ismail, A. Mohamed, A. Kamaruddin, Photobiological Hydrogen Production from Synthesis Gas: Carbon Sources, KLa and Kinetics Evaluation, Developments in Chemical Engineering and Mineral Processing 13 2005 549-562.
98- M.P. Devi, S.V. Mohan, G. Mohanakrishna, P. Sarma, Regulatory influence of CO2 supplementation on fermentative hydrogen production process, Int J Hydrogen Energy 35 2010 10701-10709.
99- J.H. Sim, A.H. Kamaruddin, Optimization of acetic acid production from synthesis gas by chemolithotrophic bacterium-Clostridium aceticum using statistical approach, Bioresour Technol 99 2008 2724-2735.
100- J. Wiegel, R. Tanner, F.A. Rainey, An introduction to the family of Clostridiaceae, The Prokaryotes 2 2006 654–678.
101- P. Hu, L.T. Jacobsen, J.G. Horton, R.S. Lewis, Sulfide assessment in bioreactors with gas replacement, Biochem Eng J 49 2010 429-434.
102- J. Saxena, R.S. Tanner, Effect of trace metals on ethanol production from synthesis gas by the ethanologenic acetogen, Clostridium ragsdalei, J Ind Microbiol Biotechnol 2010.
103- R.L. Huhnke, R.S. Lewis, R.S. Tanner, Isolation and characterization of novel clostridial species, Us Patent Pub No 2010/0203606 A1 2010.
104- S.S. Adams, S. Scott, C. Ko. Method for sustaining microorganism culture in syngas fermentation process in decreased concentration or absence of various substrates. US Patent App. 20,100/227,377; 2010.
105- G. Najafpour, H. Younesi, A.R. Mohamed, Effect of organic substrate on hydrogen production from synthesis gas using Rhodospirillum rubrum, in batch culture, Biochem Eng J 21 2004 123-130.
106- A. Ahmed, R.S. Lewis, Fermentation of biomass generated synthesis gas: Effects of nitric oxide, Biotechnol Bioeng 97 2007 1080-1086.
107- A.J. Ungerman, T.J. Heindel, Carbon monoxide mass transfer for syngas fermentation in a stirred tank reactor with dual impeller configurations, Biotechnol Progr 23 2007 613-620.
108- P.C. Munasinghe, S.K. Khanal, Syngas fermentation to biofuel: Evaluation of carbon monoxide mass transfer coefficient (kLa) in different reactor configurations, Biotechnol Progr 2010.
109- K. Klasson, J. Cowger, C. Ko, J. Vega, E. Clausen, J. Gaddy, Methane production from synthesis gas using a mixed culture of R. rubrum M. barkeri, and M. formicicum, Appl Biochem Biotechnol 24 1990 317-328.
110- H. Zhu, B.H. Shanks, T.J. Heindel, Enhancing CO-Water Mass Transfer by Functionalized MCM41 Nanoparticles, Ind Eng Chem Res 47 2008 7881-7887.
111- H. Zhu, B.H. Shanks, D.W. Choi, T.J. Heindel, Effect of functionalized MCM41 nanoparticles on syngas fermentation, Biomass Bioenergy 34 2010 1624-1627.
112- J. Vega, S. Prieto, B. Elmore, E. Clausen, J. Gaddy, The biological production of ethanol from synthesis gas, Appl Biochem Biotechnol 20 1989 781-797.
113- I.S. Chang, B.H. Kim, R.W. Lovitt, J.S. Bang, Effect of CO partial pressure on cell-recycled continuous CO fermentation by Eubacterium limosum KIST612, Process Biochem 37 2001 411-421.
114- K.M. Hurst, R.S. Lewis, Carbon monoxide partial pressure effects on the metabolic process of syngas fermentation, Biochem Eng J 48 2010 159-165.
115- G. Najafpour, H. Younesi, Ethanol and acetate synthesis from waste gas using batch culture of Clostridium ljungdahlii, Enzyme Microb Technol 38 2006 223-228.
116- D. G. Peacock, J.F. Richardson, Chemical and Biochemical Reactors & Process Control, Vol. 3, 3rd Ed., 1999 Elsevier Science & Technology
117- S. Wang, Y. Zhang, H. Dong, S. Mao, Y. Zhu, R. Wang, G. Luan, Y. Li, Formic Acid Triggers the” Acid Crash” of Acetone-Butanol-Ethanol Fermentation by Clostridium acetobutylicum, Appl Environ Microbiol 77 2011 1674-1680.
118- P. Hols, A. Ramos, J. Hugenholtz, J. Delcour, W.M. De Vos, H. Santos, M. Kleerebezem, Acetate utilization in Lactococcus lactis deficient in lactate dehydrogenase: a rescue pathway for maintaining redox balance, J Bacteriol 181 1999 5521-5526.
119- T. Ezeji, N. Qureshi, H. Blaschek, Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping, Appl Microbiol Biotechnol 63 2004 653-658.
120- I. Maddox, E. Steiner, S. Hirsch, S. Wessner, N. Gutierrez, J. Gapes, K. Schuster, The Cause of “Acid Crash” and “Acidogenic Fermentations” During the Batch Acetone-Butanol-Ethanol(ABE-) Fermentation Process, J Mol Microbiol Biotechnol 2 2000 95-100.
121- M.H. Hansen, K. Ingvorsen, B.B. Jorgensen, Mechanisms of hydrogen sulfide release from coastal marine sediments to the atmosphere, Limnology and Oceanography 1978 68-76.
122- J.E. Bailey, D.F. Ollis, Biochemical engineering fundamentals, 2nd edition, McGraw-Hill, New York, 1986.
123- J.L. Vega, V.L. Holmberg, E.C. Clausen, J.L. Gaddy, Fermentation parameters of Peptostreptococcus productus on gaseous substrates (CO, H2/CO2), Archives of microbiology 151 1988 65-70.
124- J. Luong, Generalization of Monod kinetics for analysis of growth data with substrate inhibition, Biotechnology and bioengineering 29 1987 242-248.
125- F. Garcia-Ochoa, E. Gomez, Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview, Biotechnology advances 27 2009 153-176.
126- J.C. Gabelle, F. Augier, A. Carvalho, R. Rousset, J. Morchain, Effect of tank size on kLa and mixing time in aerated stirred reactors with non-newtonian fluids, The Canadian Journal of Chemical Engineering 89 2011 1139-1153.
127- G.D. Najafpour. Biochemical engineering and biotechnology, Amsterdam, Elsevier Science; 2006.
128- Geankoplis, C.J. Transport Processes and Separation Process Principles. Fourth Edition. 2003 New Jersey: Prentice Hall

Abstract
Clostridium ljungdahlii is a strictly anaerobic acetogene able to grow on CO and H2/CO2 as synthesis gas components and ferment them to ethanol and acetate under ambient temperature and pressure. In this process, the bacterium presents a complex metabolic pathway including both the acetogenic and solventogenic phases. During the heterotrophic batch cultivation of the bacterium, the effect of various carbon sources (fructose, glucose, ethanol and acetate) on triggering the metabolic shift toward solventogenesis was considered. The fermentation results demonstrated the equimolar production of ethanol (27.1 mM) and acetate (26.3 mM) in the presence of fructose. During the autotrophic growth of the bacterium with synthesis gas for lowering the redox potential of the growth medium and alteration of the electron flow toward solventogenesis, various reducing solutions (sodium

پایان نامه
Previous Entries منابع پایان نامه ارشد درباره of، and، a، Biotechnol Next Entries تحقیق با موضوع سازمان ملل، خلیج فارس، دینامیکی، مجمع عمومی