منابع پایان نامه ارشد درباره بازدارندگی، ایالات متحده، جاری سازی، تجاری سازی

دانلود پایان نامه ارشد

هوازی را می توان به ارگانیزمهای اتوتروف10 یا یونی کربنوتروف11 طبقه بندی کرد. اتوتروفها ترکیبات تک کربنی موجود در گاز سنتز همچون CO و/یا CO2 را به عنوان منبع کربن و H2 را به عنوان منبع انرژی مصرف می کنند در حالی که یونی کربنوتروفها می توانند از ترکیبات تک کربنی به عنوان تنها منبع کربن و همچنین انرژی استفاده کنند [18]. انواع مختلفی از ارگانیزمهای بی هوازی مانند میکروبهای فتوسنتزی، استوژنیک12، کربوکسیدوتروفیک13 و متانوژنیک14 می توانند فرایند تبدیل گاز سنتز به محصولات با ارزش را انجام دهند [19]. فرایند تخمیر گاز سنتز می تواند منجر به تولید هیدروژن، اتانول، بوتانول، اسید استیک، اسید بوتیریک، متان، بیوپلیمرها و پروتئین تک سلولی شود [20].

1-4 مزیتهای بیوکاتالیستها
با وجود آنکه فرایند تبدیل گاز سنتز به سوخت با استفاده از کاتالیستهای پایه فلزی تکنولوژی قابل اطمینانی است که منجر به انجام واکنشهای پایدار می شود اما این فرایند کاتالیستی نیز محدودیتهای خود را دارد. معایبی همچون گزینش پذیری کم کاتالیست، هزینه بالای فرایند با توجه به استفاده از دما و فشار بالا در راکتورها، گستردگی توزیع محصول، نیاز به یک نسبت مشخص از اجزای گاز برای تولید محصول مطلوب و احتمال مسموم شدن کاتالیست با مقادیر کم گازهای سولفوری موجود در گاز سنتز منجر به هزینه بالای سوختهای سنتزی می شوند [11, 21]. سولفور موجود در گاز سنتز معمولا به صورت سولفید هیدروژن (H2S) و سولفید کربونیل (COS) است و مقادیر کمتری از مرکاپتانها یا سولفور آلی نیز حضور دارند که عامل اصلی بارانهای اسیدی هستند. معمولا از فرایندهایی نظیر کلاز15، اکسیداسیون فاز مایع و جذب برای کاهش میزان سولفور موجود در گاز سنتز به کمتر از 1/0ppm استفاده می شود [22].
استفاده از باکتریهای تخمیری به عنوان بیوکاتالیست بسیاری از کاستی هایی را که در فرایند تبدیل کاتالیستی وجود دارد مرتفع ساخته است. اول اینکه بیوکاتالیستها در دما و فشار معمولی عمل می کنند که این مساله منجر به کاهش هزینه انرژی می شود. علاوه بر این، فعالیت بیوکاتالیستها در دمای محیطی مانع از رسیدن به تعادل ترمودینامیکی شده و موجب برگشت ناپذیری واکنشهای بیولوژیکی می گردد که در نهایت میزان تبدیل را در این واکنشها افزایش می دهد [11, 21, 23]. دوم اینکه در واکنشهای بیوکاتالیستی با توجه به اختصاصی بودن آنزیم16 برای یک واکنش مشخص، میزان بازدهی محصول افزایش یافته، بازیابی محصول ساده تر گردیده و محصولات جانبی سمی کمتری در طی فرایند به وجود می آیند [23, 24]. سوم اینکه نسبت اجزای گاز سنتز تاثیر کمتری روی بیوکاتالیستها داشته و آنها نیاز به یک نسبت ثابت CO/H2 ندارند در حالی که کاتالیستهای متداول نیاز به یک نسبت مشخص از اجزای گاز سنتز دارند تا منجر به تولید محصولی خاص شوند. چهارم اینکه حتی مواد اولیه ای که برای واکنشهای آنزیمی سمی هستند را می توان پس از فرایند تبدیل به گاز کردن تخمیر کرد زیرا تفاوت در ترکیب شیمیائی مواد اولیه اهمیت چندانی در فرایند تبدیل به گاز کردن ندارد [24]. مساله آخر اینکه بیشتر بیوکاتالیستها می توانند مقادیر کم آلودگیهایی نظیر سولفور و کلر را تحمل کنند که این خصوصیت یکی از برتری های عمده آنها بر کاتالیستهای پایه فلزی است. حتی رشد باکتریهای بی هوازی می تواند در حضور ترکیبات سولفوری تحریک شود زیرا سولفور به عنوان یک عامل کاهنده عمل می کند که پتانسیل کاهشی محیط کشت را کاهش می دهد [14, 25, 26]. هرچند، گاز سنتز باید قبل از فرایند تخمیر تا اندازه ای تمیز و خالص سازی شود تا فعالیت باکتریایی در حد مطلوب حفظ شود. همچنین تجمع هیدروکربنهای سنگین17 و ذرات نیمسوز شده18 موجود در گاز سنتز در خطوط لوله گاز ممکن است موجب مسدود شدن و شکستگی لوله ها و یا جریان ناپایدار گاز در خط لوله شود [17].

1-5 تولید اتانول به عنوان سوخت بیولوژیکی
تولید اتانول از نشاسته، سلولز و همی سلولز از طریق فرایند بیوشیمیائی تا به امروز شناخته شده ترین روش برای تولید صنعتی اتانول است [15]. تولید جهانی اتانول در سال 2008 به میزان 68 بیلیون لیتر بوده است. تقریبا همه این اتانول از جمله سوختهای بیولوژیکی نسل اول بوده که عمدتا از نیشکر و ذرت تولید گردیدند. تولید جهانی بیواتانول در سالهای 2008-2000 در شکل 1-3 نشان داده شده است [1].

شکل ‏13 : تولید جهانی اتانول بیولوژیکی در سالهای 2008-2000[1]

در فرایند تبدیل بیوشیمیائی، ماده اولیه به قندهای شش تایی و پنج تایی تجزیه شده و سپس به اتانول تخمیر می گردد. دو گروه از میکروارگانیزمها برای انجام این فرایند با بازده تولید اتانول بالا، بسیار نزدیک به مقدار تئوری، شناخته شده اند که عبارتند از ساکرومایسی سرویسیا19( مخمر) و اعضای طبقه زیموموناس20 همانند زیموموناس موبیلیس21 (باکتری). ساکرومایسی سرویسیا از طریق مسیر بیولوژیکی اِمدن-میرهوف-پارناس22 پیروات23 تولید می کند و زیموموناس موبیلیس از مسیر بیولوژیکی انتنر-دودرف24 استفاده می کند تا از کربوهیدراتها پیروات تولید کند که بعدا به اتانول تبدیل می گردد [27].
فرایند تبدیل شیمیائی-حرارتی روش جایگزینی برای فرایند بیوشیمیائی است که به عنوان فرایند غیر مستقیم تخمیر اتانول مورد توجه زیادی قرار گرفته است. در این روش، همان طور که اشاره شد، از تبدیل به گاز کردن یا پیرولیز مواد اولیه، گاز سنتز تولید می شود که به عنوان سوبسترا در فرایند تخمیر برای تولید اتانول و سایر سوختهای بیولوژیکی مورد استفاده قرار می گیرد. معمولا از باکتریهای استوژنیک که ارگانیزمهای لزوما بی هوازی25 هستند برای انجام فرایند تخمیر استفاده می شود. این باکتریهای لزوما بی هوازی قادرند به صورت کمولیتوتروف26 روی اجزای گاز سنتز یعنی CO و CO2/H2 رشد کرده و در شرایط دما و فشار محیطی آنها را به اسیدهای چرب فرار و الکل تبدیل کنند [21, 26, 27]. بدین منظور، انواع مختلفی از گونه های کلستریدیا27 و مورلا28 جداسازی شده اند [27].
به طور کلی، نرخ پائین واکنش و نیاز به محیط استریل برای جلوگیری از آلوده شدن محیط کشت از معایب روشهای بیولوژیکی محسوب می شوند. هرچند، در فرایند تخمیر گاز سنتز حضور CO در جریان گاز، شرایط استریل را تضمین می کند چرا که CO برای بیشتر ارگانیزمها سمی است. محدودیتهای انتقال جرم مشکل دیگری است که در این فرایند بیولوژیکی وجود دارد زیرا سوبسترای گازی و به خصوص CO و H2 حلالیت کمی در محیط کشت مایع دارند [22]. تاکنون، ترکیبات محدودی، عمدتا اتانول و استات، از فرایندهای تخمیر میکروبی گاز سنتز حاصل گردیده اند. ارگانیزمهای شناخته شده نمی توانند ترکیبات دیگر را به میزان مطلوبی تولید کنند و ممکن است دستکاریهای ژنتیکی مورد نیاز باشد تا بازده تولید محصول را در این ارگانیزمها بهبود داده و همچنین حساسیت آنها را نسبت به محصولات نهایی افزایش دهند [12, 28] . با توجه این موانع، تجاری سازی فرایند تخمیر گاز سنتز هنوز با محدودیتهای عمده ای مواجه است. با وجود آنکه تا کنون تنها سه کمپانی INEOS Bio (ایالات متحده امریکا، 2008)، Coskata (ایالات متحده امریکا، 2009) و LanzaTech (نیوزلند، 2010) موفق به تولید اتانول در مقیاس بالا از فرایند تخمیر گاز سنتز گردیده اند [28, 29]، اما فرایند تخمیر گاز سنتز به عنوان یکی از روشهای مطلوب برای تولید نسل دوم سوختهای بیولوژیکی باید در سالهای آتی مورد توجه قرار گیرد.
1-6 طرح مساله و ضرورت انجام پروژه
افزایش نگرانیهای مربوط به نوسان قیمت انرژی در بازارهای جهانی و محدودیتهایی که در بهره برداری از ذخایر فسیلی در سالهای آتی وجود دارد لزوم یافتن منابع سوخت و انرژی جایگزین را افزایش می دهد. استفاده از گاز سنتز برای تولید سوخت از طریق روشهای میکروبی می تواند تا حدودی پاسخگوی این نیاز مبرم باشد. فرایند تخمیر گاز سنتز روشی برای تولید پایدار بسیاری از سوختها و ترکیبات شیمیائی است که مزیتهای فراوانی نسبت به تبدیل کاتالیستی گاز سنتز دارد. با وجود آنکه فرایند تبدیل به گاز کردن بیومس به صورت گسترده ای مورد مطالعه قرار گرفته است اما تلفیق آن با فرایند تخمیر به منظور تولید سوختهای بیولوژیکی همچنان فرایندی تکامل نیافته است. عدم وجود اطلاعات کافی در متون در مورد مصرف سوبسترای گازی توسط بیوکاتالیستها برای تولید سوختهای بیولوژیکی و نبود شرایط بهینه مشخص برای رشد و فعالیت انواع متفاوت باکتریهای استوژنیک، هیدروژنوژنیک و متانوژنیک برای دستیابی به بازده بالای محصول لزوم انجام تحقیق و پژوهش روی فرایند تخمیر گاز سنتز را افزایش می دهد. علاوه بر این، دستیابی به دانش فنی به منظور بومی سازی این فرایند مستلزم انجام تحقیقات گسترده و برنامه ریزی های بلند مدت می باشد تا امکان تجاری سازی فرایند را فراهم سازد.

1-7 اهداف کلی29 پروژه
هدف کلی این پروژه تولید اتانول و استات از گاز سنتز بوده است و دستیابی به اهداف زیر به طور خاص مورد بررسی قرار گرفته است:
• بررسی رشد کموارگانوتروفیک باکتری لانگالی بر روی سوبستراهای مختلف و مطالعه تاثیر سوبسترای آلی روی رشد سلول و بازده تولید محصول
• مطالعه رشد اتوتروفیک باکتری لانگالی بر روی گاز سنتز و بازده تولید محصول
• بهینه سازی میزان تولید اتانول نسبت به استات با تعیین مقدار بهینه برخی از پارامترهای موثر از جمله pH محیط کشت، نوع و مقدار عوامل کاهنده و فشار گاز سنتز در بیوراکتورهای ناپیوسته
• بررسی کینتیک رشد سلول، مصرف سوبسترای گازی، بازدارندگی ناشی از CO و بازده تولید محصول درآزمایشهای ناپیوسته
• بهینه سازی پارامترهای عملیاتی همچون نرخ رقیق سازی مایع، شدت جریان گاز سنتز به درون بیوراکتور و دور همزن در آزمایشهای پیوسته به منظور افزایش بازده تولید محصول
• تعیین ضرایب انتقال جرم در آزمایشهای پیوسته در بیوراکتور

1-8 اهداف و چهارچوب پروژه30
باکتری کلستریدیوم لانگالی به عنوان یک باکتری استوژن لزوما بی هوازی به عنوان کاتالیست میکروبی در فرایند تخمیر گاز سنتز مورد استفاده قرار گرفت. این باکتری می تواند به صورت کموارگانوتروف روی سوبستراهای آلی و یا به صورت کمولیتوتروف روی اجزای گاز سنتز یعنی CO و H2/CO2 رشد کرده و آنها را به اتانول و استات تخمیر کند.
رشد کموارگانوتروفیک باکتری لانگالی روی سوبستراهای آلی مختلف در محیط کشت ناپیوسته مورد بررسی قرار گرفت. تاثیر فروکتوز، گلوکز، اتانول و استات به عنوان سوبستراهای آلی روی رشد سلول و توزیع محصولات در فازهای استوژنیک (تولید اسید استیک) و سالونتوژنیک31 (تولید اتانول) مطالعه گردید. اثر غلظتهای مختلف فروکتوز، به عنوان بهترین سوبسترای آلی، روی افزایش میزان تولید اتانول نسبت به استات بررسی شد.
رشد اتوتروفیک باکتری لانگالی روی گاز سنتزی با ترکیب ثابت 30% CO، 30% CO2، 30% H2 و 10% Ar مورد مطالعه قرار گرفت. از محلولهایی با ترکیب مختلف سیستئین اسیدی و سولفید سدیم به عنوان عوامل کاهنده، به منظور کم کردن پتانسی کاهشی در محیط کشت، استفاده گردید. اثرات همزمان عوامل کاهنده و pH محیط کشت روی رشد سلول، مصرف سوبسترای گازی و بازده تولید محصول بررسی شد. غلظت بهینه این محلولها و pH مناسب جهت افزایش تولید اتانول نسبت به استات تعیین گردید.
به منظور تعیین پارامترهای کینتیکی مربوط به رشد سلول، مصرف سوبسترای گازی و تولید محصول، فرایند تخمیر گاز سنتز توسط لانگالی در چند بیوراکتور ناپیوسته با فشارهای گاز متفاوت انجام شد. از مدلهای کینتیکی مختلف موجود در متون برای تعیین پارامترهای مربوط به رشد سلول، نرخ مصرف سوبسترای گازی، اثرات بازدارندگی CO و بازده تولید محصول استفاده گردید.
آزمایشهای پیوسته تخمیر گاز سنتز توسط لانگالی در بیوراکتور همزن دار همراه با تغییر پارامترهای عملیاتی انجام گرفت. اثرات شدت جریان گاز و مایع و دور همزن روی میزان رشد سلول، نرخ مصرف گاز و بازده تولید اتانول و استات بررسی گردید. با استفاده از

پایان نامه
Previous Entries منابع پایان نامه ارشد درباره جاری سازی، جوامع علمی، منابع غذایی، تجاری سازی Next Entries منابع پایان نامه ارشد درباره اکسیداسیون، بیوتکنولوژی، بازدارندگی