منابع و ماخذ پایان نامه مکان یابی، شبیه سازی، الگوریتم ژنتیک

دانلود پایان نامه ارشد

تابع هدف، از شبیه سازی مکرر مخزن در طی روند بهینه سازی جلوگیری می کند و این عمل باعث افزایش سرعت محاسباتی می شود. در ادامه تاریخچه مختصری از روش های مبتنی بر پروکسی ها ارائه خواهد شد.
روش های بهینه سازی جهانی، محلی و ترکیب آن ها در [10] انجام شده است. همچنین روش های فرا بهینه سازی64 برای نحوه ترکیب بهینه این الگوریتم ها پیشنهاد شده است. برای الگوریتم بهینه جهانی انواع مختلف خانواده PSO نظیر CP-PSO65 و PP-PSO66 و PSO معمولی مورد بررسی قرار گرفته است. الگوریتم HJDS به منظور الگوریتم بهینه یاب محلی استفاده شده است. الگوریتم ترکیبی شامل تعدادی ارزیابی تابع هدف (یا شبیه سازی مخزن) به روش PSO و استفاده از بهترین پاسخ این روش به عنوان شرط اولیه برای الگوریتم HJDS می باشد. در این پایان نامه نشان داده شده است که برای مخازن متفاوت الگوریتم ترکیبی عملکرد بهتری را نسبت به روش های PSO یا HJDS تنها دارد.
2-3-4- الگوریتم های بهینه سازی مبتنی بر گرادیان
الگوریتم های بهینه سازی بر مبنای گرادیان که به مسئله مکان یابی چاه ها اعمال شده است شامل روش های تصادفی تخمین گرادیان و روش های بر مبنای مدل کمکی می باشد. در [23]، روش 67SPSA برای مکان یابی چند چاه عمودی اعمال شده است. الگوریتم SPSA یک روش بر مبنای تخمین گرادیان می باشد. برای محاسبه گرادیان در این روش، در هر تکرار یک جهت در فضای جستجو به طور تصادفی انتخاب می شود. با بکارگیری دو نقطه ارزیابی یکی در جهت انتخابی و دیگری در جهت مخالف، تعیین می شود که آیا تابع هدف در این جهت کاهش می یابد یا افزایش و سپس یک تقریب از مشتق تابع هدف محاسبه می شود. از ویژگی های مثبت این روش این است که در هر تکرار تنها دو بار نیاز به محاسبه تابع هدف می باشد و این تعداد ارزیابی مستقل از تعداد متغیرهای مسئله بهینه سازی می باشد. در [23] نیز الگوریتم مشتق تفاضل متناهی68 (FDG) در مسئله مکان یابی چاه ها اعمال شده است. الگوریتم FDG مشابه الگوریتم SPSA می باشد با این تفاوت که در روش FDG گرادیان به کمک تقریب تفاضل متناهی برای هر متغیر مسئله بهینه سازی محاسبه می شود. در [23] نشان داده شده است که مشتق محاسبه شده به روش FDG به طور قابل مقایسه ای دقیق تر از روش SPSA می باشد، اما تعداد ارزیابی های تابع هدف به منظور محاسبه مشتق در روش FDG بیش از روش SPSA می باشد. در این پژوهش نتیجه گرفته شده است که الگوریتم SPSA نتایج بهتری را نسبت به FDG برای مسئله مکان یابی ارائه می دهد.
در [23]، الگوریتم SPSA با الگوریتم ژنتیک باینری، 69VFSA و Simplex مقایسه شده است. نشان داده شده است که الگوریتم SPSA نتایج بهتری را در بین این الگوریتم های بهینه سازی برای مسئله مکان یابی چاه های عمودی ارائه می کند.
روش های بهینه سازی دیگری بر مبنای گرادیان به مسئله مکان یابی چاه ها اعمال شده است. در [24]، روش تحت قید گوس- نیوتن برای جایابی بهینه مکان چاه های عمودی به نحوی که افت فشار مینیمم شود، به کار گرفته شده است. تابع هدف افت فشار به صورت نیمه تحلیلی بدست آمده است در حالی که مشتق تابع هدف نسبت به مکان های چاه ها به صورت عددی محاسبه شده است. در [25]، مسئله بهینه سازی برای بهینه کردن تعداد و محل چاه های تزریق در یک مخزن دو بعدی بررسی شده است. روش تندترین سقوط به عنوان الگوریتم بهینه سازی انتخاب شده است.
در [26]، مسئله بهینه سازی تولید به کمک تئوری کنترل بهینه ارائه می گردد. در این پژوهش که یکی از مراجع اصلی و معتبر روش های مبتنی بر گرادیان می باشد، تابع هدف سود حاصل از برداشت می باشد و متغییر تصمیم گیری نرخ تزریق چاه های تزریق کننده می باشد و همچنین معادلات دینامیک مخزن نقش قید های مسئله بهینه سازی را ایفا می کند. مبنای این روش استفاده از شبیه ساز مخزن به عنوان مدل مستقیم و محاسبه گرادیان تابع هدف به کمک مدل کمکی70 می باشد. برنامه نویسی مدل کمکی پیچیده و زمان براست و همچنین وابسته به مدل مستقیم می باشد و بایستی با تغییر مدل مستقیم، مدل کمکی به روز شود. در این روش تمام اطلاعات مورد نیاز جهت محاسبات مربوط به مدل کمکی، در هر بار اجرای مدل مستقیم ذخیره می شود. سپس مدل کمکی، تنها با چیدمان صحیح اطلاعات گرادیان تابع هدف را محاسبه می کند. پیچیدگی محاسبه گرادیان به روش مدل کمکی به اندازه دشواری شبیه سازی مخزن یا همان مدل مستقیم می باشد. این مشکل یکی از بزرگترین نقایص این روش می باشد که منجر به عدم محبوبیت این روش در صنعت نفت شده است. واضح است که در این تحقیق مسئله کنترل بهینه چاه به جای مسئله مکان یابی مد نظر قرار گرفته است. اما باید خاطر نشان کرد که نتایج این پژوهش به طور غیر مستقیم در مسئله مکان یابی بهینه چاه های نفت مورد استفاده قرار می گیرد.
در [25]، الگوریتم سریع ترین سقوط را به مسئله اعمال کردند. آن ها مسئله مکان یابی یک یا چند چاه تزریق در یک مخزن دو بعدی به گونه ای که NPV حداکثر شود، مورد توجه قرار دادند. ایده اصلی روش به این صورت است که در ابتدا در هر گریدی که شامل چاه برداشت نیست، یک چاه تزریق در نظر گرفته می شود، و پس از آن در هر مرحله از الگوریتم تعداد چاه ها کاهش می یابد تا زمانی که تعداد بهینه ای از چاه ها در مکان بهینه باقی بماند. برای این منظور تابع هدف به همراه هزینه حفر چاه در نظر گرفته می شود. بنابراین هر چه تعداد چاه های تزریق حفر شده بیشتر باشد، هزینه نهایی حفر چاه ها بیشتر می شود و در نتیجه تابع هدف کاهش می یابد. الگوریتم به کمک مدل کمکی در هر مرحله گرادیان تابع هدف اصلاح شده را نسبت به نرخ هر چاه محاسبه می کند و بدین ترتیب بهبود می یابد که بنای اصلی این محاسبات از [26] نتیجه شده است. در ادامه با بکارگیری روش سریع ترین سقوط از این گرادیان ها برای محاسبه نرخ بعدی هر چاه استفاده می کند. هر گاه نرخ یک چاه به سمت صفر برود، آن چاه حذف می شود. این روش کاربرد غیر مستقیم روش گرادیان است زیرا به جای محاسبه گرادیان تابع هدف نسبت به پارامترهای حقیقی بهینه سازی، گرادیان آن نسبت به نرخ چاه ها محاسبه می شود. اما چون الگوریتم با حفر یک چاه در هر گرید کارش را شروع می کند و در هر مرحله تنها یک چاه قابل حذف است، این روش برای مسائل با ابعاد بزرگ مناسب نمی باشد. مقاله [27]، با تغییر کوچکی در نحوه جستجو توانسته است در هر مرحله بیش از یک چاه تزریق را حذف کند.
ایده اصلی روش ارائه شده در [28]، این است که هر چاهی که قرار است بهینه شود، با 8 چاه کاذب در 8 گرید همسایه محاصره شود و هر کدام از این چاه ها دارای یک نرخ تولید بسیار کم است تا اثر آن بر رفتار فلوی مخزن حداقل شود. پس از آن یک مدل کمکی برای محاسبه گرادیان تابع هدف (ارزش حال پروژه) نسبت به نرخ هر چاه کاذب در طول عمر مخزن استفاده می شود. بزرگترین گرادیان مثبت در بین 8 گرادیان، تعیین کننده جهتی است که چاه اصلی باید در آن جهت حرکت کند تا تابع هدف افزایش یابد. به عبارت دیگر، جهت مناسب به کمک مکان چاه کمکی با بزرگترین گرادیان مثبت تعیین می شود. این روش را نیز کاربرد غیر مستقیم گرادیان می نامند چرا که در اینحا به جای استفاده از گرادیان تابع هدف نسبت به پارامترهای حقیقی بهینه سازی، از گرادیان تابع هدف نسبت به نرخ چاه های کمکی استفاده می شود.
از مزایای مهم روش های مبتنی بر مدل کمکی کارامدی آن ها از نظر محاسباتی می باشد. اما این روش مضنون به دام افتادن در بهینه های محلی می باشد و همچنین پاسخ بهینه آن به شرایط اولیه نیز وابسته می باشد. به علاوه، استفاده از تکنیک چاه های کاذب برای مسئله مکان یابی دارای چالش های بی پاسخی نظیر وجود چاه های غیرمعمول مثل چاه های چند لایه ای می باشد که در [28] این نوع چاه ها بررسی نشده است. اگرچه در [29] با تغییراتی در تکنیک چاه های کاذب این مسئله بررسی شده است. در نهایت باید به این نکته توجه نمود که در روش های بر مبنای مدل کمکی بایستی به کد شبیه سازی های مخزن جهت محاسبه گرادیان دسترسی داشت، در صورتی که در دیگر روش های بهینه سازی به این اطلاعات نیازی نمی باشد.
مکان یابی بهینه چاه ها به کمک الگوریتم های تصادفی نیازمند تعداد زیادی ارزیابی تابع هدف می باشد که هر ارزیابی ملزم به اجرای مدل مخزن می باشد. هزینه های محاسباتی در این نوع الگوریتم ها به چندین شیوه می تواند کاهش یابد. استفاده از پردازنده های موازی جهت اجرای شبیه ساز مخزن، به کار بردن مدل های نیمه تحلیلی برای مخزن و یا استفاده از مدل جایگزین71 (پروکسی) مخزن از راه کارهای پیشنهاد شده می باشد. در بخش بعدی، برخی از روش های بر مبنای پروکسی که در مسئله مکان یابی چاه ها به کار گرفته شده است توضیح داده خواهد شد.
2-3-5- کاربرد پروکسی ها
پروکسی ها از نظر محاسباتی بسیار سریع هستند و تقریبی از مدل مخزن ارائه می دهند. این روش ها با کاهش تعداد شبیه سازی ها در طی فرآیند بهینه سازی از بار محاسباتی مسئله بهینه سازی می کاهند. در واقع پروکسی ها با محاسبه تقریبی از تابع هدف از ارزیابی زیاد آن جلوگیری می کند. در موارد بسیاری از روش پروکسی ها در مسائل مکان یابی بهینه چاه ها استفاده شده است. این تکنیک ها شامل روش هایی نظیر Kriging که یک نوع درونیاب است [30]، حداقل مربعات [31]، شبکه های عصبی [32] و روش های فازی- عصبی می باشد.
2-3-6- بهینه سازی تحت قید
در مسائل بهینه یابی مکان چاه، غالباً دو دسته قید بررسی می شود: محدودیت مربوط به متغییرهای تصمیم گیری و قیدهای عملیاتی.
قیدهای محدودیت متغیرها به دلیل محدود بودن پاسخ مسئله در یک بازه مشخص جستجو به وجود می آید. برای مثال تمام چاه ها باید در یک ناحیه معین و قابل حفر، حفر شوند. قیدهای عملیاتی در پروژه های توسعه مخازن ظاهر می شود. محدودیت فاصله چاه ها از یکدیگر، قیدهای مربوط به نحوه برنامه ریزی حفر چاه، محدودیت نرخ تولید و تزریق چاه ها و امکانات تولید، محدودیت تعداد چاه ها و غیره از دسته قیدهای عملیاتی می باشد. ترکیب این قید ها منجر به پیچیدگی مسئله مکان یابی می شود.
راهکارهای مختلفی جهت در نظر گرفتن قیود در مسئله بهینه یابی مکان چاه پیشنهاد شده است. معمولترین روش استفاده از روش جریمه72 می باشد، به طوری که پاسخ های نشدنی73 جریمه می شوند [32] یا به تابع هدف آن ها یک مقدار منفی بزرگ اختصاص داده می شود [33]. نحوه اعمال قید های مختلفی نظیر ماکزیمم طول چاه و مینیمم فاصله بین دو چاه در [34] بیان شده است. در این پژوهش از الگوریتم ژنتیک باینری استفاده شده است. در این روش دو دسته جمعیت وجود دارد که هر عضو بسته به نقض کردن یا نکردن قیدها به یکی از این جمعیت ها تعلق دارد. زمانی که عضوی قیدی را نقض می کند از اپراتوری برای بهبود این عضو به نحوی که به یک پاسخ شدنی تبدیل شود، کمک گرفته می شود.

فصل سوم

توصیف معادلات حاکم بر مخزن، گسسته سازی و شبیه سازی
3-1- مقدمه
با توجه به اینکه مدل ریاضی حاکم بر مخرن نقش قید های مسئله بهینه یابی مکان چاه های نفتی را ایفا می کند، بررسی دقیق معادلات مخزن امری ضروری می باشد. در این فصل ابتدا معادلات توصیف کننده مخزن بیان می‌گردد و در ادامه‌ نحوه گسسته سازی و حل عددی این معادلات توضیح داده می‌شود. پس از ذکر مطالب فوق، مدل مخزن بر پایه ی روش سنتی Finite Difference و Streamline معرفی می گردد. بعد از ایجاد شناخت کافی، به مقایسه‌ی این دو روش معروف مدلسازی مخازن می‌پردازیم و در ادامه نرم افزار FrontSim به عنوان یکی از نرم افزارهای شبیه ساز مخزن بر پایه Streamline معرفی خواهد شد. در انتهای فصل نیز نحوه لینک آن را به نرم افزار متلب بررسی خواهیم کرد.
3-2- معادلات مخزن
معادلات مخزن در اکثر مراجع مهندسی مخازن آمده است. مطالب این بخش عمدتاً از مراجع [3، 35] گرد آوری شده است.

پایان نامه
Previous Entries منابع و ماخذ پایان نامه مکان یابی، الگوریتم ژنتیک، روش های ترکیبی Next Entries منابع و ماخذ پایان نامه نفوذپذیری، شبیه سازی