منابع و ماخذ پایان نامه دانشگاه آزاد اسلامی، فناوری اطلاعات، دانشگاه تهران

دانلود پایان نامه ارشد

case study of urban systems in Iran. Cities, 2013. 31(0): p. 394-403.
93) Li, D.-C., W.-L. Dai, and W.-T. Tseng, A two-stage clustering method to analyze customer characteristics to build discriminative customer management: A case of textile manufacturing business. Expert Systems with Applications, 2011. 38(6): p. 7186-7191.
94) Khajvand, M., et al., Estimating customer lifetime value based on RFM analysis of customer purchase behavior: Case study. Procedia Computer Science, 2011. 3(0): p. 57-63.
95) Chang, H.-C. Developing EL-RFM model for quantification learner’s learning behavior in distance learning. in Education Technology and Computer (ICETC), 2010 2nd International Conference on. 2010. IEEE.
96) Chang, H.-C. and H.-P. Tsai, Group RFM analysis as a novel framework to discover better customer consumption behavior. Expert Systems with Applications, 2011. 38(12): p. 14499-14513.
97) Yeh, I., K.-J. Yang, and T.-M. Ting, Knowledge discovery on RFM model using Bernoulli sequence. Expert Systems with Applications, 2009. 36(3): p. 5866-5871.
98) Hu, Y.-H. and T.-W. Yeh, Discovering valuable frequent patterns based on RFM analysis without customer identification information. Knowledge-Based Systems, 2014. 61(0): p. 76-88.
99) Chen, Y.-L., et al., Discovering recency, frequency, and monetary (RFM) sequential patterns from customers’ purchasing data. Electronic Commerce Research and Applications, 2009. 8(5): p. 241-251.
100) Dan, Z. Integrating RFM model and Cluster for Students Loan Subsidy Valuation. in Business and Information Management, 2008. ISBIM’08. International Seminar on. 2008. IEEE.
101) Bizhani, M. and M.J. Tarokh. Behavioral segmentation of bank’s Point-of-Sales using RF* M* approach. in Intelligent Computer Communication and Processing (ICCP), 2010 IEEE International Conference on. 2010. IEEE.
102) Khajvand, M. and M.J. Tarokh, Estimating customer future value of different customer segments based on adapted RFM model in retail banking context. Procedia Computer Science, 2011. 3(0): p. 1327-1332.
103) Abbasi, E., et al., Defining Marketing Strategies by Data Mining For “Internet Sale System of Train Ticket”, in The Fourth Iran Data Mining Conference. 2010, IDMC: Tehran.
104) Wong, J.-Y. and P.-H. Chung, Managing valuable Taiwanese airline passengers using knowledge discovery in database techniques. Journal of Air Transport Management, 2007. 13(6): p. 362-370.
105) Chiang, W.-Y., Applying a New Model of Customer Value on International Air Passengers’ Market in Taiwan. International Journal of Tourism Research, 2012. 14(2): p. 116-123.
106) Chiang, W.-Y., Applying data mining with a new model on customer relationship management systems: a case of airline industry in Taiwan. Transportation Letters, 2014. 6(2): p. 89-97.
107) Dwyer, F.R., Customer lifetime valuation to support marketing decision making. Journal of direct marketing, 1989. 3(4): p. 8-15.
108) Pfeifer, P.E. and R.L. Carraway, Modeling customer relationships as Markov chains. Journal of interactive marketing, 2000. 14(2): p. 43-55.
109) Kahreh, M.S., et al., Analyzing the Applications of Customer Lifetime Value (CLV) based on Benefit Segmentation for the Banking Sector. Procedia – Social and Behavioral Sciences, 2014. 109(0): p. 590-594.
110( رزمی،جعفر و آرش قنبری، ارائه مدلي نوين جهت محاسبه ارزش دوره عمر مشتري. نشريه مديريت فناوري اطلاعات, 1388.
111) Hwang, H., T. Jung, and E. Suh, An LTV model and customer segmentation based on customer value: a case study on the wireless telecommunication industry. Expert Systems with Applications, 2004. 26(2): p. 181-188.
112) Liu, Y., et al. A Model of Customer Lifetime Value Consider with Word-of-mouth Marketing Value. in ICEB. 2004.
113) Cheng, C.J., et al., Customer lifetime value prediction by a Markov chain based data mining model: Application to an auto repair and maintenance company in Taiwan. Scientia Iranica, 2012. 19(3): p. 849-855.
114) Ma, M., Z. Li, and J. Chen, Phase-type distribution of customer relationship with Markovian response and marketing expenditure decision on the customer lifetime value. European Journal of Operational Research, 2008. 187(1): p. 313-326.
115) Cuadros, A.J. and V.E. Domínguez, Customer segmentation model based on value generation for marketing strategies formulation. Estudios Gerenciales, 2014(0).
116) Liu, J. and H. Du. Study on airline customer value evaluation based on RFM model. in Computer Design and Applications (ICCDA), 2010 International Conference on. 2010.
117) Jones, J.L., R.F. Easley, and G.J. Koehler, Market segmentation within consolidated E-markets: A generalized combinatorial auction approach. Journal of Management Information Systems, 2006. 23(1): p. 161–182.
118) Niknam, T. and B. Amiri, An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis. Applied Soft Computing, 2010. 10(1): p. 183-197.
119) T, V., Performance based analysis between k-Means and Fuzzy C-Means clustering algorithms for connection oriented telecommunication data. Applied Soft Computing, 2014. 19(0): p. 134-146.
120) Malinen, M.I., R. Mariescu-Istodor, and P. Fränti, K-means⁎: Clustering by gradual data transformation. Pattern Recognition, 2014. 47(10): p. 3376-3386.
121) Ahn, H., et al., Facilitating cross-selling in a mobile telecom market to develop customer classification model based on hybrid data mining techniques. Expert Systems with Applications, 2011. 38(5): p. 5005-5012.
122) Ho, G.T.S., et al., Customer grouping for better resources allocation using GA based clustering technique. Expert Systems with Applications, 2012. 39(2): p. 1979-1987.
123) Zalaghi, Z. and Y. Varzi, Measuring customer loyalty using an extended RFM and clustering technique. Management Science Letters, 2014. 4(5): p. 905-912.
124) Hongmei, S. and Z. Gaofeng. Construction of Bayesian classifiers with GA for response modeling in direct marketing. in Computer Science and Information Technology, 2009. ICCSIT 2009. 2nd IEEE International Conference on. 2009.
125( آتش پز گرگری، اسماعیل، توسعه الگوريتم بهينه سازي اجتماعي و بررسي كارايي آن، دانشكده مهندسي برق و كامپيوتر. 1387، دانشگاه تهران.
126) Atashpaz-Gargari, E. and C. Lucas. Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition. in Evolutionary Computation, 2007. CEC 2007. IEEE Congress on. 2007. IEEE.
127( نقاشی، فاطمه؛ فاطمه فلاح طریقی و محسن فلاح راد، 1391، معرفی الگوریتم رقابت استعماری، دومین کنفرانس ملی مهندسی نرم افزار، لاهیجان، دانشگاه آزاد اسلامی واحد لاهیجان.
128) Niknam, T., et al., An efficient hybrid algorithm based on modified imperialist competitive algorithm and K-means for data clustering. Engineering Applications of Artificial Intelligence, 2011. 24(2): p. 306-317.
129) Ghanavati, M., et al., AN EFFICIENT COST FUNCTION FOR IMPERIALIST COMPETITIVE ALGORITHM TO FIND BEST CLUSTERS. Journal of Theoretical & Applied Information Technology, 2011. 29(1).
130) Zhou, Z., X. Miao, and G. Liu. Customer Segmentation Algorithm of Wireless Content Service Based on Ant K-Means. in Computer Science-Technology and Applications, 2009. IFCSTA ’09. International Forum on. 2009.
131) Verbeke, W., et al., Building comprehensible customer churn prediction models with advanced rule induction techniques. Expert Systems with Applications, 2011. 38(3): p. 2354-2364.
132) Sadri, J. and C.Y. Suen. A genetic binary particle swarm optimization model. in Evolutionary Computation, 2006. CEC 2006. IEEE Congress on. 2006. IEEE.
133) Ahmadyfard, A. and H. Modares. Combining PSO and k-means to Enhance Data Clustering. in Telecommunications, 2008. IST 2008. International Symposium on. 2008. IEEE.
134) Hsieh, Y.-H., S.-T. Yuan, and R.-L. Kuo, A PSO-based intelligent service dispatching mechanism for customer expectation management. Expert Systems with Applications, 2011. 38(10): p. 12128-12141.
135) Chiu, C.-Y., et al., An intelligent market segmentation system using k-means and particle swarm optimization. Expert Systems with Applications, 2009. 36(3, Part 1): p. 4558-4565.
136) Das, S., A. Abraham, and A. Konar, Automatic kernel clustering with a multi-elitist particle swarm optimization algorithm. Pattern Recognition Letters, 2008. 29(5): p. 688-699.
137) Idris, A., M. Rizwan, and A. Khan, Churn prediction in telecom using Random Forest and PSO based data balancing in combination with various feature selection strategies. Computers & Electrical Engineering, 2012. 38(6): p. 1808-1819.
138) Fathian, M., B. Amiri, and A. Maroosi, Application of honey-bee mating optimization algorithm on clustering. Applied Mathematics and Computation, 2007. 190(2): p. 1502-1513.
139) Amiri, B. and M. Fathian, Integration of self organizing feature maps and honey bee mating optimization algorithm for market segmentation. Journal of Theoretical and Applied Information Technology, 2007. 3(3): p. 70-86.
140) Chiu, C.-Y. and I.T. Kuo, Applying particle swarm optimization and honey bee mating optimization in developing an intelligent market segmentation system. Journal of Systems Science and Systems Engineering, 2010. 19(2): p. 182-191.
141) Paauwe, P., P. van der Putten, and M. Van Wezel. DTMC: an actionable e-customer lifetime value model based on markov chains and decision trees. in Proceedings of the ninth international conference on Electronic commerce. 2007. ACM.
142) Etzion, O., A. Fisher, and S. Wasserkrug. e-CLV: a modelling approach for customer lifetime evaluation in e-commerce domains, with an application and case study for online auctions. in e-Technology, e-Commerce and e-Service, 2004. EEE’04. 2004 IEEE International Conference on. 2004. IEEE.
143( کوپایی، مجتبی و بهروز مینایی بیدگلی، 1387، روشی برای پیش بینی ارزش طول عمر مشتریان فروشگاههای زنجیره ای، پنجمین کنفرانس بین المللی مدیریت فناوری اطلاعات و ارتباطات، تهران، ندای اقتصاد بامداد (ناب).
144) Fedorco, Ľ. and J. Hospodka, Airline Pricing Strategies In European Airline Market. Faculty of

پایان نامه
Previous Entries منابع و ماخذ پایان نامه and، of، p.، Management, Next Entries منابع و ماخذ پایان نامه محل سکونت، اتحادیه اروپا، دسترسی به اطلاعات، تحلیل سلسله مراتبی