مقاله رایگان درباره روش حداقل مربعات

دانلود پایان نامه ارشد

8-1- کليات
روشهاي طيف نورسنجي در مقايسه با روشهاي کروماتوگرافي و الکتروفورز اقتصاديتر و سادهتر هستند. همراه کردن اين روشهاي ارزان و ساده با فنون درجهبندي189 چندمتغيره براي اندازهگيري موادي که طيفهاي آنها با هم همپوشاني دارند، ميتواند حائز اهميت باشد که امکان اندازهگيري تعدادي از مواد را در نمونههاي پيچيده، بدون نياز به مراحل سخت و پيچيده جداسازي فراهم ميکند. کمومتريکس190 اولين بار در سال 1971، توسط ولد191 معرفي شد و در سال 1974 با همراهي کووالسکي192 انجمن بينالمللي کمومتريکس را بنا نهاد. تعريف اين انجمن از کمومتريکس، کاربرد روشهاي رياضي و آمار در شيمي به منظور بهينهسازي اطلاعات شيميايي حاصل از اندازهگيريهاي انجام شده ميباشد [258-256]. تعريف ديگر کمومتريکس کاربرد روشهاي رياضي و آمار براي بهبود فرآيند اندازهگيريهاي شيميايي و استخراج اطلاعات شيميايي باارزش از اندازهگيريهاي شيميايي و فيزيکي است. هدف محققين کمومتريکس يافتن روشهاي مناسب براي استخراج اطلاعات مفيد از دادههاي کسب شده توسط آزمايشات تجربي است.
امروزه درجهبندي چندمتغيره193 شاخه مهمي از کمومتريکس را تشکيل ميدهد که توسط آن ميتوان جوابهاي گرفته شده از يک دستگاه را به غلظت يک يا چند ماد? مورد اندازهگيري در يک نمونه ارتباط داد. بدين ترتيب مـيتوان اندازهگيري همزمان چند مـاده در يک نمونه را عملي نمود. بسياري از روشهاي درجهبندي چندمتغيره ابتدا براي ناحيهIR نزديک ابداع شدند که امروزه در ساير روشهاي طيفسنجي نظير MS NMR ,UV-Vis و در فنون کروماتوگرافي، الکتروفورز و پلاروگرافي بهکار ميروند.

8-1-1- درجهبندي
درجهبندي در شيمي تجزيه فرآيندي است که علامت يا جواب گرفته شده از دستگاه را به غلظت ماد? مـورد تجزيه194 ارتبـاط ميدهد. هر فرآيند درجهبندي به دو مرحـل? مـدلسازي و پيشبيني تقـسيمبندي ميشود، که در مرحله مدلسازي در چند غلظت معلوم از محلولهاي استاندارد ماد? مورد تجزيه (متغير مستقل x)، مقدار متغير وابسته y اندازهگيري ميشود و سپس مدلي از y بر حسب x و يا بالعکس ساخته ميشود. در مرحله پيشبيني، مدل ساخته شده مورد ارزيابي قرار گرفته و در صورت نياز در آن تغييراتي ايجاد ميشود. در نهايت با اندازهگيري y براي نمون? مجهول مقدار غلظت ماد? مورد تجزيه براساس مدل ساخته شده تعيين ميگردد [262-259].
در فرآيند درجهبندي تکمتغيره تنها يک متغير وابسته و يک متغير مستقل وجود دارد. استفاده از قانون بير195 در اندازهگيري غلظت گونهها به روش طيفسنجي جذب مولکولي مثالي از اين روش ميباشد. در مرحله مدلسازي، جذب چندين نمون? استاندارد با غلظت معيني از ماد? مورد تجزيه خوانده و مدلي براي ارتباط جذب برحسب غلظت ماد? مورد تجزيه ساخته ميشود و در مرحل? پيشبيني به کمک مدل ساخته شده، مقدار جذب نمون? مجهول را به غلظت ماد? مورد تجزيه ارتباط ميدهند. اختلاف بين غلظت واقعي و غلظت محاسبه شده توسط مدل بهعنوان معياري از توانايي پيشبيني مدل ميباشد. زماني که نمونه بسيار ساده باشد و عاري از هر گونه مزاحمت باشد، روشهاي تکمتغيره مورد استفاده قرار ميگيرند. در صورت عدم وجود روشهاي مناسب براي جداسازي يک ماده از مزاحمتها بايد روشي که براي آن نمونه انتخابي است، بهکار برده شود که از محدوديتهاي عمده روش درجهبندي تکمتغيره ميباشد. همچنين براساس يک اندازهگيري منفرد غيرممکن است بتوان از وجود مزاحمتهاي ناشناخته آگاهي يافت و تشخيص داد کدام پيشبيني غيرقابل اطمينان است [260،262].
يکي از مشکلات اصلي در شيمي تجزيه، يافتن روشهاي اندازهگيري است که تنها براي ماد? مورد تجزيه انتخابي باشد. علاوه بر نوفه، وجود مزاحمتهاي فيزيکي مانند پراکندگي نور و مزاحمتهاي طيفي نظير همپوشاني بر جوابهاي حاصل از دستگاه تأثير گذاشته و باعث غيرخطي شدن مـنحني درجهبندي ميگردند. در روشهاي درجهبندي چندمتغيره تعداد زيادي متغير اندازهگيري شده x1, x2 ,…xn براي تعيين يک يا چند y مورد استفاده قرار ميگيرند. در درجهبندي چندمتغيره با زياد شدن تعداد اندازهگيريها، امکان اندازهگيري چند جزء بهصورت همزمان فراهم ميشود. همچنين در صورت استفاده از روشهاي درجهبندي چندمتغيره نياز به آمادهسازي نمونه تا حد زيادي کاهش مييابد. چون ضرورتي براي دستيابي به روشهاي اندازهگيري انتخابي نيست و ميتوان يک جزء را در کنار مزاحمتها اندازهگيري کرد. اثر مـزاحمتها نيز توسط مجموع? درجهبندي داراي شرايط و مزاحمتهاي يکسان با نمون? مجهول است و با مدلهاي رياضي جبران ميشود [261].
همـانند درجهبندي تکمتغيره، فرآيند درجهبندي چندمتغيره نيز شامل دو مرحل? مـدلسازي و پيشبيني است. در مرحل? مدلسازي براي چندين نمونه استاندارد چندجزئي با غلظتهاي مشخص، در چندين طول موج جذب تعيين ميگردد و سپس با يک مدل رياضي ماتريس جذب را به ماتريس غلظت ارتباط ميدهند. تعداد ستونهاي ماتريس جذب، معرف تعداد طول موجها و تعداد سطرهاي آن معرف تعداد نمونههاي استاندارد است. تعداد ستونهاي ماتريس غلظت، معرف تعداد اجزاء و تعداد سطرهاي آن معرف تعداد نمونههاي استاندارد است. مثلاً اگر جذب براي ده نمونه استاندارد در صد طول موج تعيين گردد، ماتريس جذب يک ماتريس 100×10 ميباشد. اگر تعداد اجزاء مورد اندازهگيري دو باشد ماتريس غلظت 2×10 ميباشد. در مرحل? پيشبيني، غلظت اجزاي مورد نظر در نمون? مجهول به کمک مدل رياضي ساخته شده و با استفاده از طيف جذبي نمونه پيشبيني ميشود [263،264]. با استفاده از روشهاي چندمتغيره امکان اندازهگيري چندين جذب در چندين طول موج فراهم ميشود. اين امر باعث کاهش انحراف استاندارد و افزايش صحت در پيشبيني غلظت نمون? مجهول ميشود. اندازهگيـري همزمـان چند جزء در نمونههاي پيچيده نيز امـکانپذير است و با توجه به زياد بودن تعداد انـدازهگيريها مـيتوان قابل اطمـينان بودن پيشبينيها را ارزيابي نموده و نمونههاي انحرافي را شناسايي نمود. نمون? انحرافي در مجموع? درجهبندي ناشي از اشتباه در تهيه نمونه با غلظت مورد نظر از اجزاء است و در مجموع? آزمايشي196 ناشي از اجزاء ناشناختهاي است که در مجموع? درجهبندي موجود نيستند. نمونههاي انحرافي در مجموع? درجهبندي197 باعث ارائه مدل ضعيف ميشود و در مجموع? آزمايشي باعث تفاوت زياد غلظت از مقادير واقعي ميشود [260،267-265]. درجهبندي چندمتغيره شامل روشهاي مستقيم و غيرمستقيم است.

8-1-1-1- روش مستقيم حداقل مربعات کلاسيک198 (CLS) يا تحليل چند جزئي مستقيم199 (DMA)
اين روش در اواسط دهه 1970 ابداع شد. اين روش براساس قانون بير بنا نهاده شد که فرض ميشود جذب يک نمونه در هر طول موج، متناسب با غلظت اجزاي موجود در آن نمونه ميباشد. لذا هر گونه انحراف از قانون بير مثل برهمکـنش گون? مورد اندازهگيري و پراکندگي نور، موجب خطـاي زيادي در پيشبينيها ميشود [268-263]. در اين روش ميتوان جذب را در کل محدود? مرئي و ماوراء بنفش با فواصل 1/0 نانومتر تعيين نموده و کلي? اين مقادير را در مدلسازي شرکت داد، لذا مـحدوديتي از لحاظ تعداد طول موجها وجود ندارد. به اين روشها، روشهاي “طيف کامل” ميگويند که به علت امکان متوسطگيري علامت در محدود? طيفي مورد استفاده، دقت اندازهگيريها زياد ميشود [269،270]. اين روش براي توضيح حداقل مربعات کلاسيک اجزاء خالص بهکار ميرود و باقيماندههاي طيفي و طيف خالص را کاملاً مشخص ميکند. همچنين نسبت به روشهايي که به تعداد کمي از فرکانسها محدود ميشوند، بهبود بيشتري در دقت مشاهده ميشود [271]. محدوديتهايي براي اين روش وجود دارد. بهعنوان مثال، رابطه بير (A = ?bc) زماني صادق است که اجزاي نمونه با هم برهمکنش نداشته باشند. در صورت انحراف از قانون بير و غيرخطي شدن منحني درجهبندي، اين روش کارايي چنداني ندارد [272،273]. همچنين در اين روش علاوه بر غلظت گون? مورد اندازهگيري، غلظت ساير اجزاي مزاحم بايد در نمونههاي استاندارد معلوم باشد. اين امر موجب محدوديت استفاده از اين روش براي تجزيه نمونههاي پيچيده ميگردد [270،274]. تعيين غلظت گون? مورد اندازهگيري در نمونه مجهول نيز نيازمند دو مرحله است که خطاهاي حاصل از گرد شدن جوابها در هر مرحله تأثير نامطلوبي در جواب نهايي ميگذارند [275،276].

8-1-1-2- روشهاي درجهبندي غيرمستقيم
بهدليل محدوديتهاي روش CLS، روشهاي غيرمستقيم پيشنهاد شدند. روشهاي درجهبندي غيرمستقيم، غلظت گون? مورد اندازهگيري را بهطور خطي به ماتريس جذب در طول موجهاي مختلف ارتباط ميدهند [260،276]. در روشهاي غيرمستقيم تنها لازم است غلظت گون? مورد نظر در نمونههاي استاندارد معلوم باشد و ميتوان اجزاي مزاحم را بهصورت تصادفي و بدون دقت لازم به نمونههاي استاندارد افزود. اولين روش غيرمستقيم با نام حداقل مربعات معکوس200 (ILS) يا برازش خطي چندگانه201 (MLR) در اوايل ده? 1980 ميلادي ابداع گرديد. بعد از آن روشهاي غيرمستقيم مبتني بر فاکتور مرسوم گرديدند که بسيار توانمندتر از MLR هستند [266].
روش MLR برداشت معکوسي از قانون بير است که غلظت گون? مورد اندازهگيري تابع خطي از جذب بوده و ماتريس C را به روش حداقل مربعات با توجه به ماتريس A تخمين ميزند. در صورتي که nنمونه استاندارد i جزئي داشته باشيم و طيف هر يک از نمونه ها در w طول موج ثبت گردد مطابق عکس قانون بير رابطه زير برقرار است.
(8-1) C = BA + E
در رابطه فوق B يک ماتريس i×w و E يک ماتريس i×n از خطاها يا باقيماند? غلظت ميباشد. از مزاياي روش MLR نسبت به CLS محاسبات ماتريسي سادهتر در اين روش ميباشد [259،260،277]. از مـحدوديتهاي روش MLR اين است که تعـداد طول موجهاي انتخاب شده حتماً بايد کمتر از تعداد نمـونههاي استاندارد باشد، لذا انتخاب طول موجهاي مناسب از اهميت بالايي برخوردار است. در صورتيکه کلي? اجزاي موجود در نمونه در محدود? طيفي مورد نظر نور را جذب کنند، اين روش کارايي چنداني ندارد، چون وابستگي خطي ستونها در ماتريس جذب رخ ميدهد [260،263].
روشهاي مبتني بر تحليل فاکتور202 (FA) که از روشهاي غيرمستقيم ميباشند، ضمن بهرهگيري از مزاياي MLR فاقد محدوديتهاي آن ميباشند و مزاياي هر دو روشCLS و MLR را دارند. روش تحليل فاکتور از قدرتمندترين فنون در حوزه کمومتريکس است که اين روشها جهت کاهش ابعاد دادهها با استفاده از حداقل تعداد بردارهاي عمود بر هم يا فاکتورها، حاوي کلي? اطلاعات مفيد و مهم ميباشند [259]. اين روشها همانند CLS، جزء روشهاي طيف کامل ميباشند، لذا از مزيت معدلگيري از علامت برخوردارند و توانايي بيشتري در تشخيص نمونههاي انحرافي دارند. اين روشها قادرند اطلاعات اضافي موجود در ماتريس جذب را حذف نموده و اطلاعات مفيد را در يک ماتريس با ابعاد کوچکتر ارائه دهند. اين کار توسط ايجاد حداقل تعداد بردارهاي عمود بر هم يا فاکتورها انجام ميگيرد. تعداد فاکتورها نمايشگر تعداد ستونهاي مستقل خطي در ماتريس جذب است، لذا مشکل وابستگي خطي در اينجا وجود ندارد [262،270،278]. دو روش برازش جزء اصلي203 (PCR ) و حداقل مربعات جزئي204 (PLS ) مثالهايي از روشهاي غيرمستقيم مبتني بر تحليل فاکتور هستند. اين روشها در حضور مزاحمتهاي شيميايي و فيزيکي، نوفه و برهمکنش گونهها از کارايي بيشتري نسبت به روشهاي MLR و CLS برخوردارند [259].
يک فاکتور (جزء اصلي)، ترکيبي خطي از متغيرهاي اصلي موجود در يک ماتريس ميباشد. ثابت شده است که ميتوان بهجاي يک ماتريس j×i، متغيرهاي آن را بهصورت يک ترکيب خطي از j فاکتور تعريف نمود و در نتيجه متغيرهاي جديدي براي ماتريس بهوجود آورد. تعريف ماتريس A بهصورت ماتريسي از ترکيب خطي فاکتورهاي آن (A)، اين مزيت را دارد که اگر ستون خاصي در A سودمند نباشد، ميتوان فاکتورهايي را يافت که هنگام تشکيل A1اهميت بسيار کمي براي اين ستون قائل باشند [259].
روش PCR ترکيبي از دو مرحله تحليل اجزاء اصلي205 ( PCA) و برازش ميباشد. مرحلهPCA شامل يافتن فاکتورهاي مناسب براي ماتريس A است که بردارهاي ويژه مناسبترين فاکتورها براي يک ماتريس

پایان نامه
Previous Entries منابع پایان نامه درمورد شهرستان رشت، استان گیلان، دریای خزر Next Entries منابع پایان نامه درمورد پوشش گیاهی، بخش مرکزی شهر، شهرستان رشت